Optical Memory in a Microfabricated Rubidium Vapor Cell

被引:9
|
作者
Mottola, Roberto [1 ]
Buser, Gianni [1 ]
Treutlein, Philipp [1 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
QUANTUM NETWORK;
D O I
10.1103/PhysRevLett.131.260801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scalability presents a central platform challenge for the components of current quantum network implementations that can be addressed by microfabrication techniques. We demonstrate a high-bandwidth optical memory using a warm alkali atom ensemble in a microfabricated vapor cell compatible with waferscale fabrication. By applying an external tesla-order magnetic field, we explore a novel ground-state quantum memory scheme in the hyperfine Paschen-Back regime, where individual optical transitions can be addressed in a Doppler-broadened medium. Working on the Rb-87 D-2 line, where deterministic quantum dot single-photon sources are available, we demonstrate bandwidth-matching with hundreds of megahertz broad light pulses keeping such sources in mind. For a storage time of 80 ns we measure an end-to-end efficiency of eta(80 ns)(e2e) = 3.12(17)%, corresponding to an internal efficiency of eta(0 ns)(int) = 24(3)%, while achieving a signal-to-noise ratio of SNR = 7.9(8) with coherent pulses at the single-photon level.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Microfabricated atomic vapor cell arrays for magnetic field measurements
    Woetzel, S.
    Schultze, V.
    IJsselsteijn, R.
    Schulz, T.
    Anders, S.
    Stolz, R.
    Meyer, H. -G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (03):
  • [32] Transmission degradation and preservation for tapered optical fibers in rubidium vapor
    Lai, Meimei
    Franson, James D.
    Pittman, Todd B.
    APPLIED OPTICS, 2013, 52 (12) : 2595 - 2601
  • [33] Resonant nonlinearity enhancement in rubidium vapor with additional optical pumping
    Korneev, N.
    Torres, Y. M.
    Gutierrez-Parra, C.
    Ortega, Y.
    JOURNAL OF MODERN OPTICS, 2014, 61 (12) : 1009 - 1017
  • [34] ADIABATIC FOLLOWING AND SLOW OPTICAL PULSE PROPAGATION IN RUBIDIUM VAPOR
    GRISCHKOWSKY, D
    PHYSICAL REVIEW A, 1973, 7 (06) : 2096 - 2102
  • [35] Observing the optical frequency comb in the blue fluorescence of rubidium vapor
    Lira, Filipe A.
    Moreno, Marco P.
    Vianna, Sandra S.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (24)
  • [36] DETERMINATION OF VAPOR-PRESSURE OF RUBIDIUM BY OPTICAL-ABSORPTION
    GALLAGHE.A
    LEWIS, EL
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (07) : 864 - 869
  • [37] Rubidium vapor cell with integrated nonmetallic multilayer reflectors
    Perez, M. A.
    Nguyen, U.
    Knappe, S.
    Donley, E.
    Kitching, J.
    Shkel, A. M.
    MEMS 2008: 21ST IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2008, : 790 - +
  • [38] Microfabricated alkali vapor cell with anti-relaxation wall coating
    Straessle, R.
    Pellaton, M.
    Affolderbach, C.
    Petremand, Y.
    Briand, D.
    Mileti, G.
    de Rooij, N. F.
    APPLIED PHYSICS LETTERS, 2014, 105 (04)
  • [39] Imaging of relaxation times and microwave field strength in a microfabricated vapor cell
    Horsley, Andrew
    Du, Guan-Xiang
    Pellaton, Matthieu
    Affolderbach, Christoph
    Mileti, Gaetano
    Treutlein, Philipp
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [40] Optical quantum technologies for compact rubidium vapor-cell frequency standards in space using small satellites
    Dinkelaker, Aline N.
    Kaparthy, Akash
    Reher, Sven E.
    Krutzik, Markus
    Bawamia, Ahmad
    Kurbis, Christian
    Smol, Robert
    Christopher, Heike
    Wicht, Andreas
    Werner, Philipp
    Bartholomaus, Julian
    Rotter, Sven
    Barschke, Merlin F.
    Jordens, Robert
    JBIS - Journal of the British Interplanetary Society, 2019, 72 (03): : 74 - 82