Hermitian Yang-Mills connections on pullback bundles

被引:0
|
作者
Sektnan, Lars Martin [1 ,2 ]
Tipler, Carl [3 ]
机构
[1] Univ Gothenburg, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Aarhus Univ, Inst Matemat, DK-8000 Aarhus C, Denmark
[3] Univ Brest, Lab Math Bretagne Atlantique, UMR CNRS 6205, Brest, France
关键词
53C07; 53C55; 14J60; EXTREMAL METRICS; VECTOR-BUNDLES; KAHLER-METRICS; STABILITY; EXISTENCE; CURVATURE;
D O I
10.1007/s00526-023-02618-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate hermitian Yang-Mills connections on pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions with connected fibres. Under some technical assumptions on the graded object of a Jordan-Holder filtration, we obtain a necessary and sufficient criterion for when the pullback of a strictly semistable vector bundle will carry an hermitian Yang-Mills connection, in terms of intersection numbers on the base of the submersion. Together with the classical Donaldson-Uhlenbeck-Yau correspondence, we deduce that the pullback of a stable (resp. unstable) bundle remains stable (resp. unstable) for adiabatic classes, and settle the semi-stable case.
引用
收藏
页数:63
相关论文
共 50 条