Fast real-valued tensor decomposition framework for parameter estimation in FDA-MIMO radar

被引:0
|
作者
Guo, Yuehao [1 ]
Wang, Xianpeng [1 ]
Shi, Jinmei [2 ]
Sun, Lu [3 ]
Lan, Xiang [1 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Vocat Univ Sci & Technol, Coll Informat Engn, Haikou 571158, Peoples R China
[3] Dalian Maritime Univ, Inst Informat Sci Technol, Dept Commun Engn, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Monostatic FDA-MIMO radar; Tensor; Angle-range estimation; Propagator method; Unitary transformation technique; RANGE; ANGLE; ESPRIT; SUPPRESSION; PERFORMANCE;
D O I
10.1016/j.dsp.2023.104309
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Frequency diversity array -Multiple input multiple output (FDA-MIMO) radar has a two-dimensional angle -range dependence due to the existence of certain frequency offset between transmitting elements. For obtaining angle-range estimation, a fast real-valued tensor propagator method (PM) for FDA-MIMO radar is developed. The developed approach is based on the real-valued tensor PM, which not only utilizes the original structural information of multidimensional information to improve estimation accuracy, but also eliminates the process of high-order singular value decomposition (HOSVD) on multidimensional data, greatly reducing computational complexity. Firstly, the unitary transformation technique is employed to convert the constructed tensor into a real-valued tensor. Next, construct a covariance tensor to obtain operator matrices in different directions. Then, a signal subspace is constructed using operator matrices. Finally, the selection matrices and the obtained signal subspace are employed to estimate angle and range information. The proposed algorithm can not only achieve parameter estimation at low snapshots, but also has much lower computational complexity than other algorithms at high snapshots. Therefore, the developed approach greatly reduces computational complexity while ensuring estimation accuracy, which enables it to be applied to massive FDA-MIMO radars. Simulation results confirm the accuracy advantage and high-efficiency of our algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Joint Range, Angle and Doppler Estimation for FDA-MIMO Radar
    Xu, Jian
    Wang, Wen-Qin
    Cui, Can
    Gui, Ronghua
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 499 - 503
  • [22] Multiparameter Estimation for Monostatic FDA-MIMO Radar With Polarimetric Antenna
    Zhong, Tiantian
    Tao, Haihong
    Cao, Han
    Liao, Haiyun
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (03) : 2524 - 2539
  • [23] Tensor-based real-valued subspace approach for angle estimation in bistatic MIMO radar with unknown mutual coupling
    Wang, Xianpeng
    Wang, Wei
    Liu, Jing
    Liu, Qi
    Wang, Ben
    SIGNAL PROCESSING, 2015, 116 : 152 - 158
  • [24] Fast algorithm for moving target localisation using FDA-MIMO radar
    Xu, Jian
    Wang, Wen-Qin
    Cui, Can
    Huang, Bang
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (19): : 5749 - 5752
  • [25] An FDA-MIMO radar 2-D parameter estimation algorithm based on graph signal processing
    Wang, Haijun
    Liao, Kefei
    Xie, Ningbo
    Chen, Hanbo
    Li, Qinlin
    REMOTE SENSING LETTERS, 2025, 16 (02) : 211 - 219
  • [26] An MPGA-Based Parameter Estimation Method for FDA-MIMO Radar Under Antenna Location Errors
    Liu, Long
    Zhang, Hu
    Kong, Xin-Yi
    Lan, Lan
    Hu, Ling-Xiao
    Deng, Jing-Ya
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (11): : 3957 - 3961
  • [27] FDA-MIMO for target localization via multi-pulse tensor decomposition
    Liu, Yibin
    Wang, Chunyang
    Gong, Jian
    Tan, Ming
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2022, 14 (10) : 1250 - 1261
  • [28] FDA-MIMO radar covariance matrix estimation via shrinkage processing
    Wang, Liu
    Wang, Wen-Qin
    Zhou, Yifu
    DIGITAL SIGNAL PROCESSING, 2021, 118
  • [29] Joint Angle, Range and Velocity Estimation for bistatic FDA-MIMO Radar
    Zhao, Zhihao
    Wang, Zhimin
    Sun, Yang
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 818 - 824
  • [30] DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning
    Liu, Qi
    Wang, Xianpeng
    Huang, Mengxing
    Lan, Xiang
    Sun, Lu
    REMOTE SENSING, 2021, 13 (13)