Fast real-valued tensor decomposition framework for parameter estimation in FDA-MIMO radar

被引:0
|
作者
Guo, Yuehao [1 ]
Wang, Xianpeng [1 ]
Shi, Jinmei [2 ]
Sun, Lu [3 ]
Lan, Xiang [1 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Vocat Univ Sci & Technol, Coll Informat Engn, Haikou 571158, Peoples R China
[3] Dalian Maritime Univ, Inst Informat Sci Technol, Dept Commun Engn, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Monostatic FDA-MIMO radar; Tensor; Angle-range estimation; Propagator method; Unitary transformation technique; RANGE; ANGLE; ESPRIT; SUPPRESSION; PERFORMANCE;
D O I
10.1016/j.dsp.2023.104309
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Frequency diversity array -Multiple input multiple output (FDA-MIMO) radar has a two-dimensional angle -range dependence due to the existence of certain frequency offset between transmitting elements. For obtaining angle-range estimation, a fast real-valued tensor propagator method (PM) for FDA-MIMO radar is developed. The developed approach is based on the real-valued tensor PM, which not only utilizes the original structural information of multidimensional information to improve estimation accuracy, but also eliminates the process of high-order singular value decomposition (HOSVD) on multidimensional data, greatly reducing computational complexity. Firstly, the unitary transformation technique is employed to convert the constructed tensor into a real-valued tensor. Next, construct a covariance tensor to obtain operator matrices in different directions. Then, a signal subspace is constructed using operator matrices. Finally, the selection matrices and the obtained signal subspace are employed to estimate angle and range information. The proposed algorithm can not only achieve parameter estimation at low snapshots, but also has much lower computational complexity than other algorithms at high snapshots. Therefore, the developed approach greatly reduces computational complexity while ensuring estimation accuracy, which enables it to be applied to massive FDA-MIMO radars. Simulation results confirm the accuracy advantage and high-efficiency of our algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Target Parameter Estimation Algorithm Based on Real-Valued HOSVD for Bistatic FDA-MIMO Radar
    Guo, Yuehao
    Wang, Xianpeng
    Shi, Jinmei
    Sun, Lu
    Lan, Xiang
    REMOTE SENSING, 2023, 15 (05)
  • [2] Joint angle and range estimation for bistatic FDA-MIMO radar via real-valued subspace decomposition
    Liu, Feilong
    Wang, Xianpeng
    Huang, Mengxing
    Wan, Liangtian
    SIGNAL PROCESSING, 2021, 185
  • [3] Parameter Estimation Algorithm for Bistatic FDA-MIMO Radar Based on Tensor Framework
    Guo, Yue-Hao
    Wang, Xian-Peng
    Lan, Xiang
    Su, Ting
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (06): : 2103 - 2111
  • [4] Fast Parameter Estimation Algorithms for Conformal FDA-MIMO Radar
    Tian, Xiang
    Chen, Hui
    Huang, Bang
    Wang, Wen-Qin
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 30633 - 30641
  • [5] A Fast PARAFAC Algorithm for Parameter Estimation in Monostatic FDA-MIMO Radar
    Wang, Wenshuai
    Lan, Xiang
    Shi, Jinmei
    Wang, Xianpeng
    REMOTE SENSING, 2022, 14 (13)
  • [6] A Tensor Generalized Weighted Linear Predictor for FDA-MIMO Radar Parameter Estimation
    Wen, Chao
    Xie, Yu
    Qiao, Zhiwei
    Xu, Liyun
    Qian, Yuhua
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 6059 - 6072
  • [7] Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar
    Wang, Cheng
    Zheng, Wang
    Li, Jianfeng
    Gong, Pan
    Li, Zheng
    ETRI JOURNAL, 2021, 43 (01) : 120 - 132
  • [8] Joint range, angle and polarization estimation in polarimetric FDA-MIMO radar based on Tucker tensor decomposition
    Zhang, Qi
    Jiang, Hong
    Liu, Yunchang
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2023, 2023 (01)
  • [9] Joint range, angle and polarization estimation in polarimetric FDA-MIMO radar based on Tucker tensor decomposition
    Qi Zhang
    Hong Jiang
    Yunchang Liu
    EURASIP Journal on Advances in Signal Processing, 2023
  • [10] Tensor-Based Reduced-Dimension MUSIC Method for Parameter Estimation in Monostatic FDA-MIMO Radar
    Xu, Tengxian
    Wang, Xianpeng
    Huang, Mengxing
    Lan, Xiang
    Sun, Lu
    REMOTE SENSING, 2021, 13 (18)