Turan inequalities for k-th power partition functions

被引:1
|
作者
Benfield, Brennan [1 ]
Paul, Madhumita [2 ]
Roy, Arindam [2 ]
机构
[1] Univ Hawaii, Dept Math, 2565 McCarthy Mall, Honolulu, HI 96822 USA
[2] Univ North Carolina Charlotte, Dept Math & Stat, 9201 Univ City Blvd, Charlotte, NC 28223 USA
关键词
Power partition functions; Log-concave sequence; Turan inequalities; Jensen polynomial; LOG-CONCAVITY;
D O I
10.1016/j.jmaa.2023.127678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-th power partition function counts the number of ways that an integer can be written as a sum of perfect k-th powers, a restriction of the well known partition function. Many restricted partition functions have recently been proven to satisfy the higher order the Turan inequalities. This paper shows that the k-th power partition function likewise satisfies these inequalities. In particular, we prove a conjecture by Ulas, improving the upper and lower bounds given in his inequality. Published by Elsevier Inc.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] ON THE EXCEPTIONAL SET FOR THE SUM OF A PRIME AND A K-TH POWER
    ZACCAGNINI, A
    MATHEMATIKA, 1992, 39 (78) : 400 - 421
  • [22] THE NORM OF THE K-TH DERIVATIVE OF THE χ-SYMMETRIC POWER OF AN OPERATOR
    Carvalho, Sonia
    Freitas, Pedro J.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 302 - 316
  • [23] On the additive k-th power part residue function
    Zhang Shengsheng
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 119 - 122
  • [24] On sums of squares of primes and a k-th power of prime
    Zhixin Liu
    Rui Zhang
    Monatshefte für Mathematik, 2019, 188 : 269 - 285
  • [25] On sums of squares of primes and a k-th power of prime
    Liu, Zhixin
    Zhang, Rui
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (02): : 269 - 285
  • [26] DISTRIBUTION OF K-TH POWER NON-RESIDUES
    JORDAN, JH
    DUKE MATHEMATICAL JOURNAL, 1970, 37 (02) : 333 - &
  • [27] THE K-TH DERIVATIVES OF THE IMMANANT AND THE χ-SYMMETRIC POWER OF AN OPERATOR
    Carvalho, Sonia
    Freitas, Pedro J.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 284 - 301
  • [28] Turan type inequalities for Struve functions
    Baricz, Arpad
    Ponnusamy, Saminathan
    Singh, Sanjeev
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 971 - 984
  • [29] LEAST K-TH POWER NON-RESIDUE
    HUDSON, RH
    ARKIV FOR MATEMATIK, 1974, 12 (02): : 217 - 220
  • [30] An arithmetical function and the perfect k-th power numbers
    Yang Qianli
    Yang Mingshun
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 91 - 94