Supervised Graph Contrastive Learning for Few-Shot Node Classification

被引:3
|
作者
Tan, Zhen [1 ]
Ding, Kaize [1 ]
Guo, Ruocheng [2 ]
Liu, Huan [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
[2] Bytedance AI Lab, London, England
关键词
Few-shot learning; Graph Neural Networks; Graph contrastive learning;
D O I
10.1007/978-3-031-26390-3_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graphs present in many real-world applications, such as financial fraud detection, commercial recommendation, and social network analysis. But given the high cost of graph annotation or labeling, we face a severe graph label-scarcity problem, i.e., a graph might have a few labeled nodes. One example of such a problem is the so-called few-shot node classification. A predominant approach to this problem resorts to episodic meta-learning. In this work, we challenge the status quo by asking a fundamental question whether meta-learning is a must for few-shot node classification tasks. We propose a new and simple framework under the standard few-shot node classification setting as an alternative to meta-learning to learn an effective graph encoder. The framework consists of supervised graph contrastive learning with novel mechanisms for data augmentation, subgraph encoding, and multi-scale contrast on graphs. Extensive experiments on three benchmark datasets (CoraFull, Reddit, Ogbn) show that the new framework significantly outperforms state-of-the-art meta-learning based methods.
引用
收藏
页码:394 / 411
页数:18
相关论文
共 50 条
  • [21] Graph augmentation for node-level few-shot learning
    Wu, Zongqian
    Zhou, Peng
    Ma, Junbo
    Zhang, Jilian
    Yuan, Guoqin
    Zhu, Xiaofeng
    KNOWLEDGE-BASED SYSTEMS, 2024, 297
  • [22] Meta Supervised Contrastive Learning for Few-Shot Open-Set Modulation Classification With Signal Constellation
    Zhao, Jikui
    Wang, Huaxia
    Peng, Shengliang
    Yao, Yu-Dong
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (04) : 837 - 841
  • [23] Conditional Self-Supervised Learning for Few-Shot Classification
    An, Yuexuan
    Xue, Hui
    Zhao, Xingyu
    Zhang, Lu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2140 - 2146
  • [24] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [25] Supervised Contrastive Few-Shot Learning for High-Frequency Time Series
    Chen, Xi
    Ge, Cheng
    Wang, Ming
    Wang, Jin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7069 - 7077
  • [26] CPCL: Conceptual prototypical contrastive learning for Few-Shot text classification
    Cheng, Tao
    Cheng, Hua
    Fang, Yiquan
    Liu, Yufei
    Gao, Caiting
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11963 - 11975
  • [27] Generalized Few-Shot Node Classification
    Xu, Zhe
    Ding, Kaize
    Wang, Yu-Xiong
    Liu, Huan
    Tong, Hanghang
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 608 - 617
  • [28] Self-Supervised and Few-Shot Contrastive Learning Frameworks for Text Clustering
    Shi, Haoxiang
    Sakai, Tetsuya
    IEEE ACCESS, 2023, 11 : 84134 - 84143
  • [29] CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive Learning
    He, Jianfeng
    Zhang, Xuchao
    Lei, Shuo
    Alhamadani, Abdulaziz
    Chen, Fanglan
    Xiao, Bei
    Lu, Chang-Tien
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 698 - 710
  • [30] Refined Prototypical Contrastive Learning for Few-Shot Hyperspectral Image Classification
    Liu, Quanyong
    Peng, Jiangtao
    Ning, Yujie
    Chen, Na
    Sun, Weiwei
    Du, Qian
    Zhou, Yicong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61