Biologically Assisted One-Step Synthesis of Electrode Materials for Li-Ion Batteries

被引:3
|
作者
Galezowski, Laura [1 ]
Recham, Nadir [2 ,3 ]
Larcher, Dominique [2 ,3 ]
Miot, Jennyfer [1 ]
Skouri-Panet, Feriel [1 ]
Ahouari, Hania [4 ,5 ]
Guyot, Francois [1 ,6 ]
机构
[1] Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim, Museum Natl Hist Nat, CNRS UMR 7590, F-75005 Paris, France
[2] Univ Picardie Jules Verne, Lab React & Chim Solides, CNRS UMR 7314, 33 Rue St Leu, F-80039 Amiens 1, France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens, France
[4] Univ Lille, UMR CNRS 8516 LASIRE Lab Avance Spect Interact Rea, F-59655 Villeneuve Dascq, France
[5] Univ Lille, Inst Michel Eugene Chevreul, FR 2638 IMEC, F-59000 Lille, France
[6] Inst Univ France IUF, F-75005 Paris, France
关键词
biomineralization; biofilms; electroactive biofilms; birnessite; manganese oxides; one-pot electrode synthesis; BIOGENIC MN-OXIDE; HEXAGONAL-BIRNESSITE; MANGANESE OXIDES; MARINE BACILLUS; ELECTROCHEMICAL POLARIZATION; STRUCTURAL-CHARACTERIZATION; PARAMAGNETIC-RESONANCE; MN(II) OXIDATION; EPR; NA;
D O I
10.3390/microorganisms11030603
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures, under ambient conditions. Controlling the phases formed and their texture on a larger scale may offer environmentally relevant routes to manganese oxide synthesis, with potential technological applications, for example, for energy storage. In the present study, we sought to use biofilms to promote the formation of electroactive minerals and to control the texture of these biominerals down to the electrode scale (i.e., cm scale). We used the bacterium Pseudomonas putida strain MnB1 which can produce manganese oxide in a biofilm. We characterized the biofilm-mineral assembly using a combination of electron microscopy, synchrotron-based X-ray absorption spectroscopy, X-ray diffraction, thermogravimetric analysis and electron paramagnetic resonance spectroscopy. Under optimized conditions of biofilm growth on the surface of current collectors, mineralogical characterizations revealed the formation of several minerals including a slightly crystalline MnOx birnessite. Electrochemical measurements in a half-cell against Li(0) revealed the electrochemical signature of the Mn4+/Mn3+ redox couple indicating the electroactivity of the biomineralized biofilm without any post-synthesis chemical, physical or thermal treatment. These results provide a better understanding of the properties of biomineralized biofilms and their possible use in designing new routes for one-pot electrode synthesis.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Transition metal polysulfide chalcogels as electrode materials for Li-ion batteries
    Doan-Nguyen, Vicky
    Subrahmanyam, Kota
    Butala, Megan
    Gerbec, Jeffrey
    Islam, Saiful
    Kanipe, Katherine
    Wilson, Catrina
    Balasubramanian, Mahalingam
    Wiaderek, Kamila
    Borkiewicz, Olaf
    Chapman, Karena
    Chupas, Peter
    Moskovits, Martin
    Dunn, Bruce
    Kanatzidis, Mercouri
    Seshadri, Ram
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [32] High-Entropy Sulfides as Electrode Materials for Li-Ion Batteries
    Lin, Ling
    Wang, Kai
    Sarkar, Abhishek
    Njel, Christian
    Karkera, Guruprakash
    Wang, Qingsong
    Azmi, Raheleh
    Fichtner, Maximilian
    Hahn, Horst
    Schweidler, Simon
    Breitung, Ben
    ADVANCED ENERGY MATERIALS, 2022, 12 (08)
  • [33] Synthesis and characterization of Sn-Mo mixtures as negative electrode materials for Li-ion batteries
    Liang, Y.
    Tian, Z. G.
    Liu, H. J.
    Peng, R.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 504 (01) : 50 - 52
  • [34] Hydrothermal Synthesis and Characterization of Li2FeSiO4 as Positive Electrode Materials for Li-Ion Batteries
    Yabuuchi, Naoaki
    Yamakawa, Yuto
    Yoshii, Kazuhiro
    Komaba, Shinichi
    ELECTROCHEMISTRY, 2010, 78 (05) : 363 - 366
  • [35] One-step synthesis of vanadium-doped anatase mesocrystals for Li-ion battery anodes
    Boytsova, O., V
    Drozhzhin, O. A.
    Petukhov, D., I
    Chumakova, A., V
    Sobol, A. G.
    Beltyukov, A. N.
    Eliseev, A. A.
    Bosak, A. B.
    NANOTECHNOLOGY, 2022, 33 (05)
  • [36] Positively Highly Cited: Positive Electrode Materials for Li-Ion and Li-Batteries
    Buriak, Jillian M.
    Toro, Carlos
    CHEMISTRY OF MATERIALS, 2018, 30 (03) : 559 - 560
  • [37] Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries
    吴木生
    徐波
    欧阳楚英
    Chinese Physics B, 2016, 25 (01) : 82 - 91
  • [38] Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries
    Robert C. Massé
    Evan Uchaker
    Guozhong Cao
    Science China Materials, 2015, 58 : 715 - 766
  • [39] Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries
    Masse, Robert C.
    Uchaker, Evan
    Cao, Guozhong
    SCIENCE CHINA-MATERIALS, 2015, 58 (09) : 715 - 766
  • [40] Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries
    Wu, Musheng
    Xu, Bo
    Ouyang, Chuying
    CHINESE PHYSICS B, 2016, 25 (01)