DOA Estimation Using Deep Neural Network with Angular Sliding Window

被引:2
|
作者
Li, Yang [1 ,2 ,3 ,4 ]
Huang, Zanhu [1 ,3 ,4 ]
Liang, Can [1 ,3 ,4 ]
Zhang, Liang [1 ,3 ]
Wang, Yanhua [1 ,2 ,3 ,4 ,5 ]
Wang, Junfu [6 ]
Zhang, Yi [6 ]
Lv, Hongfen [6 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Radar Res Lab, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Beijing Inst Technol, Electromagnet Sensing Res Ctr CEMEE State Key Lab, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Beijing Key Lab Embedded Real Time Informat Proc T, Beijing 100081, Peoples R China
[5] Adv Technol Res Inst, Beijing Inst Technol, Jinan 250300, Peoples R China
[6] Beijing Racobit Elect Informat Technol Co Ltd, Beijing 100081, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
array signal processing; direction-of-arrival (DOA) estimation; deep neural network (DNN); supervised learning; OF-ARRIVAL ESTIMATION; CRITERION; SELECTION;
D O I
10.3390/electronics12040824
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural network (DNN) has shown great potential in direction-of-arrival (DOA) estimation. In high dynamic signal-to-noise (SNR) scenarios, the estimation accuracy of the weaker sources may degrade significantly due to insufficient training samples. This paper proposes a deep neural network framework with sliding window operation. The whole field-of-view (FOV) is divided into a series of sub-regions via sliding windows. Each sub-region is assumed to contain one source at most. Thus, the single-source data can be used to train all the networks, alleviating the need for the training samples and the prior information on the number of sources. A detector network and an estimator network are followed for each sub-region, enabling high estimation accuracy and the number of sources. Simulation and real data experiment results show that the proposed method can achieve excellent DOA and source number estimation performance. Specifically, in the real data experiment, the results show that the RMSE of the proposed method reaches 0.071, which is at least 0.03 lower than FFT, MUSIC, ESPRIT, and a deep learning method namely deep convolutional network (DCN), cannot estimate the lower SNR source in high dynamic SNR scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Neural Network Based Multiple Targets DOA Estimation for Millimeter-Wave Radar
    Tang, Geyu
    Gao, Xingyu
    Chen, Zhenyu
    Zhang, Yu
    Zhong, Huicai
    Li, Menggang
    [J]. 2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 433 - 438
  • [22] Tomato Maturity Estimation Using Deep Neural Network
    Kim, Taehyeong
    Lee, Dae-Hyun
    Kim, Kyoung-Chul
    Choi, Taeyong
    Yu, Jun Myoung
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [23] BENN: Bias Estimation Using a Deep Neural Network
    Giloni, Amit
    Grolman, Edita
    Hagemann, Tanja
    Fromm, Ronald
    Fischer, Sebastian
    Elovici, Yuval
    Shabtai, Asaf
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 117 - 131
  • [24] Improving DOA Estimation via an Optimal Deep Residual Neural Network Classifier on Uniform Linear Arrays
    Al Kassir, Haya
    Kantartzis, Nikolaos V.
    Lazaridis, Pavlos I.
    Sarigiannidis, Panagiotis
    Goudos, Sotirios K.
    Christodoulou, Christos G.
    Zaharis, Zaharias D.
    [J]. IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (02): : 460 - 473
  • [25] Joint Torque Estimation Using sEMG and Deep Neural Network
    Harin Kim
    Hyeonjun Park
    Sangheum Lee
    Donghan Kim
    [J]. Journal of Electrical Engineering & Technology, 2020, 15 : 2287 - 2298
  • [26] BLIND ESTIMATION OF REVERBERATION TIME USING DEEP NEURAL NETWORK
    Lee, Myungin
    Chang, Joon-Hyuk
    [J]. PROCEEDINGS OF 2016 5TH IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC 2016), 2016, : 308 - 311
  • [27] Parameter Estimation for Dynamical Systems Using a Deep Neural Network
    Dufera, Tamirat Temesgen
    Seboka, Yadeta Chimdessa
    Fresneda Portillo, Carlos
    [J]. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [28] Joint Torque Estimation Using sEMG and Deep Neural Network
    Kim, Harin
    Park, Hyeonjun
    Lee, Sangheum
    Kim, Donghan
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (05) : 2287 - 2298
  • [29] Deep Learning for DOA Estimation Using a Vector Hydrophone
    Cao, Huaigang
    Wang, Wenbo
    Ni, Haiyan
    Ren, Qunyan
    Ma, Li
    [J]. OCEANS 2019 MTS/IEEE SEATTLE, 2019,
  • [30] Real-Time Stress Assessment Using Sliding Window Based Convolutional Neural Network
    Naqvi, Syed Faraz
    Ali, Syed Saad Azhar
    Yahya, Norashikin
    Yasin, Mohd Azhar
    Hafeez, Yasir
    Subhani, Ahmad Rauf
    Adil, Syed Hasan
    Al Saggaf, Ubaid M.
    Moinuddin, Muhammad
    [J]. SENSORS, 2020, 20 (16) : 1 - 17