A robust RGB-D SLAM based on multiple geometric features and semantic segmentation in dynamic environments

被引:12
|
作者
Kuang, Benfa [1 ]
Yuan, Jie [1 ]
Liu, Qiang [1 ]
机构
[1] Xinjiang Univ, Sch Elect Engn, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic scenes; point and line features; RGB-D camera; semantic segmentation; visual SLAM; EFFICIENT;
D O I
10.1088/1361-6501/ac92a0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In indoor dynamic scenes, traditional visual simultaneous localization and mapping (SLAM) algorithms based on RGB-D cameras incorrectly use dynamic features to estimate the poses of the cameras, and do not fully utilize the geometric information in the scenes, resulting in the low positioning accuracy and robustness of SLAM systems. To solve this problem, this paper proposes an RGB-D SLAM algorithm based on multiple geometric features and semantic segmentation. The core of our SLAM system is the proposed robust exclusion method of dynamic point and line features. The method consists of the following three steps: (a) identify potential dynamic point features using motion consistency checks; (b) obtain potential motion regions via semantic segmentation, and then determine dynamic regions by combining these with dynamic point features; (c) remove point and line features in dynamic regions. The exclusion method of dynamic point and line features can be easily integrated into RGB-D SLAM systems for improving the accuracy and robustness of SLAM systems in dynamic scenes. Experimental results on the Technische Universitat Munchen (TUM) dataset demonstrate that the proposed algorithm has better positioning accuracy and stability than the original dynamic semantic (DS-SLAM) algorithm in dynamic environments. The effectiveness of the proposed algorithm is verified by comparison with other classical visual SLAM algorithms. Better mapping performance is achieved by this proposed algorithm in actual indoor scenes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Accurate RGB-D SLAM in dynamic environments based on dynamic visual feature removal
    Liu, Chenxin
    Qin, Jiahu
    Wang, Shuai
    Yu, Lei
    Wang, Yaonan
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (10)
  • [32] Accurate RGB-D SLAM in dynamic environments based on dynamic visual feature removal
    Chenxin LIU
    Jiahu QIN
    Shuai WANG
    Lei YU
    Yaonan WANG
    Science China(Information Sciences), 2022, 65 (10) : 256 - 269
  • [33] RGB-D SLAM in Dynamic Environments Using Point Correlations
    Dai, Weichen
    Zhang, Yu
    Li, Ping
    Fang, Zheng
    Scherer, Sebastian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) : 373 - 389
  • [34] RGB-D SLAM with moving object tracking in dynamic environments
    Dai, Weichen
    Zhang, Yu
    Zheng, Yuxin
    Sun, Donglei
    Li, Ping
    IET CYBER-SYSTEMS AND ROBOTICS, 2021, 3 (04) : 281 - 291
  • [35] Motion removal for reliable RGB-D SLAM in dynamic environments
    Sun, Yuxiang
    Liu, Ming
    Meng, Max Q. -H.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 108 : 115 - 128
  • [36] PoseFusion: Dense RGB-D SLAM in Dynamic Human Environments
    Zhang, Tianwei
    Nakamura, Yoshihiko
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 : 772 - 780
  • [37] A robust RGB-D SLAM algorithm
    Hu, Gibson
    Huang, Shoudong
    Zhao, Liang
    Alempijevic, Alen
    Dissanayake, Gamini
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1714 - 1719
  • [38] SEG-SLAM: Dynamic Indoor RGB-D Visual SLAM Integrating Geometric and YOLOv5-Based Semantic Information
    Cong, Peichao
    Li, Jiaxing
    Liu, Junjie
    Xiao, Yixuan
    Zhang, Xin
    SENSORS, 2024, 24 (07)
  • [39] Visual SLAM Based on Semantic Segmentation and Geometric Constraints for Dynamic Indoor Environments
    Yang, Shiqiang
    Zhao, Cheng
    Wu, Zhengkun
    Wang, Yan
    Wang, Guodong
    Li, Dexin
    IEEE ACCESS, 2022, 10 : 69636 - 69649
  • [40] RED-SLAM: real-time and effective RGB-D SLAM with spatial-geometric observations and fast semantic perception for dynamic environments
    Liu, Hailin
    Tian, Lianfang
    Du, Qiliang
    Duan, Ruxiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)