A MIC-LSTM based parameter extraction method for single-diode PV model

被引:1
|
作者
Hao, Xiaobo [1 ]
Liu, Pengcheng [1 ]
Deng, Yanhui [1 ]
Meng, Xiangjian [2 ]
机构
[1] Ningxia Hongdunzi Coal Ind, Yinchuan, Ningxia, Peoples R China
[2] Shandong Univ Sci & Technol, Qingdao, Shandong, Peoples R China
关键词
maximal information coefficient; LSTM; parameter extraction; single-diode PV model; feature value; SOLAR-CELLS; 2-DIODE MODEL; IDENTIFICATION; ALGORITHM;
D O I
10.3389/fenrg.2023.1349887
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In recent years, the installed capacity of renewable energy systems has seen rapid growth, particularly in photovoltaic (PV) power. Photovoltaic modules, being the fundamental elements of the PV system, play a crucial role in determining system performance. However, the challenge arises from the inconsistent decay rates of PV modules, which significantly impact the accuracy of PV system modeling. To address this issue, this paper introduces a novel MIC-LSTM based parameter extraction method for the single-diode PV model. This method focuses on accurately deriving PV module model parameters under various decay rates. By establishing a mapping relationship between the current-voltage (I-V) curve characteristics and the five unknown parameters in the photovoltaic module model, the proposed method demonstrates high precision in parameter extraction. Simulation and experimental verifications are carried out to validate the proposed method, where the extraction accuracy is 99.3%, 98.39%, 98.85%, 97.91%, and 98.36% for the five unknown model parameters.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Nearshore significant wave height prediction based on MIC-LSTM model
    Li, Yan
    Qin, Xue
    Zhu, Daoheng
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3963 - 3979
  • [12] A method for hybrid extraction of single-diode model parameters of photovoltaics
    Arabshahi, M. R.
    Torkaman, H.
    Keyhani, A.
    RENEWABLE ENERGY, 2020, 158 : 236 - 252
  • [13] An efficient method for predicting PV modules performance based on the two-diode model and adaptable to the single-diode model
    Tifidat, Kawtar
    Maouhoub, Noureddine
    RENEWABLE ENERGY, 2023, 216
  • [14] Parameters Estimation of Solar PV Modules Based on Single-Diode Model
    Teyabeen, Alhassan A.
    Elhatmi, Najeya B.
    Essnid, Akram A.
    Jwaid, Ali E.
    2020 11TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2020,
  • [15] Constrained optimisation approach for parameter estimation of PV modules with single-diode equivalent model
    Moshksar, Ehsan
    Ghanbari, Teymoor
    IET RENEWABLE POWER GENERATION, 2018, 12 (12) : 1398 - 1404
  • [16] Nearshore significant wave height prediction based on MIC-LSTM model
    Yan Li
    Xue Qin
    Daoheng Zhu
    Earth Science Informatics, 2023, 16 : 3963 - 3979
  • [17] Single-Diode Model and Two-Diode Model of PV Modules: A Comparison
    Shannan, Nahla Mohamed Abd Alrahim
    Yahaya, Nor Zaihar
    Singh, Balbir
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2013), 2013, : 210 - 214
  • [18] Enhanced Optimization Techniques for Parameter Estimation of Single-Diode PV Modules
    Kumar, Madhav
    Panda, Kaibalya Prasad
    Naayagi, Ramasamy T.
    Thakur, Ritula
    Panda, Gayadhar
    ELECTRONICS, 2024, 13 (15)
  • [19] Statistical Method for Single-Diode Model Parameters Extraction of a Photovoltaic Module
    Rivas-Vazquez, Aldo J.
    Loera-Palomo, Rodrigo
    Alvarez-Macias, Carlos
    Rivero, Michel
    Sellschopp-Sanchez, Francisco S.
    PROCEEDINGS OF THE XXII 2020 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2020), VOL 4, 2020,
  • [20] Parameter Estimation of a Single-Diode PV Model Using a Hybrid Charged System Search Algorithm
    Huang, Chao-Ming
    Chen, Shin-Ju
    Yang, Sung-Pei
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 947 - 952