Integration of datasets for individual prediction of DNA methylation-based biomarkers

被引:0
|
作者
Merzbacher, Charlotte [1 ]
Ryan, Barry [1 ]
Goldsborough, Thibaut [1 ]
Hillary, Robert F. [2 ]
Campbell, Archie [2 ]
Murphy, Lee [3 ]
Mcintosh, Andrew M. [2 ,4 ]
Liewald, David [5 ]
Harris, Sarah E. [5 ]
Mcrae, Allan F. [6 ]
Cox, Simon R. [5 ]
Cannings, Timothy I. [7 ]
Vallejos, Catalina A. [8 ,9 ]
Mccartney, Daniel L. [2 ]
Marioni, Riccardo E. [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Scotland
[2] Univ Edinburgh, Inst Genet & Canc, Ctr Genom & Expt Med, Edinburgh EH4 2XU, Scotland
[3] Univ Edinburgh, Edinburgh Clin Res Facil, Edinburgh EH4 2XU, Scotland
[4] Univ Edinburgh, Ctr Clin Brain Sci, Div Psychiat, Edinburgh, Scotland
[5] Univ Edinburgh, Dept Psychol, Lothian Birth Cohorts, Edinburgh EH8 9JZ, Scotland
[6] Univ Queensland, Inst Mol Biosci, Brisbane, Australia
[7] Univ Edinburgh, Maxwell Inst Math Sci, Sch Math, Edinburgh EH9 3FD, Scotland
[8] Univ Edinburgh, Inst Genet & Canc, MRC Human Genet Unit, Edinburgh EH4 2XU, Scotland
[9] Alan Turing Inst, London, England
基金
英国惠康基金;
关键词
DNA methylation; Prediction; Biomarker; QUANTILE NORMALIZATION; PACKAGE; DESIGN;
D O I
10.1186/s13059-023-03114-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundEpigenetic scores (EpiScores) can provide biomarkers of lifestyle and disease risk. Projecting new datasets onto a reference panel is challenging due to separation of technical and biological variation with array data. Normalisation can standardise data distributions but may also remove population-level biological variation.ResultsWe compare two birth cohorts (Lothian Birth Cohorts of 1921 and 1936 - nLBC1921 = 387 and nLBC1936 = 498) with blood-based DNA methylation assessed at the same chronological age (79 years) and processed in the same lab but in different years and experimental batches. We examine the effect of 16 normalisation methods on a novel BMI EpiScore (trained in an external cohort, n = 18,413), and Horvath's pan-tissue DNA methylation age, when the cohorts are normalised separately and together. The BMI EpiScore explains a maximum variance of R2=24.5% in BMI in LBC1936 (SWAN normalisation). Although there are cross-cohort R2 differences, the normalisation method makes a minimal difference to within-cohort estimates. Conversely, a range of absolute differences are seen for individual-level EpiScore estimates for BMI and age when cohorts are normalised separately versus together. While within-array methods result in identical EpiScores whether a cohort is normalised on its own or together with the second dataset, a range of differences is observed for between-array methods.ConclusionsNormalisation methods returning similar EpiScores, whether cohorts are analysed separately or together, will minimise technical variation when projecting new data onto a reference panel. These methods are important for cases where raw data is unavailable and joint normalisation of cohorts is computationally expensive.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
    Jessica Nordlund
    Christofer L Bäcklin
    Vasilios Zachariadis
    Lucia Cavelier
    Johan Dahlberg
    Ingegerd Öfverholm
    Gisela Barbany
    Ann Nordgren
    Elin Övernäs
    Jonas Abrahamsson
    Trond Flaegstad
    Mats M Heyman
    Ólafur G Jónsson
    Jukka Kanerva
    Rolf Larsson
    Josefine Palle
    Kjeld Schmiegelow
    Mats G Gustafsson
    Gudmar Lönnerholm
    Erik Forestier
    Ann-Christine Syvänen
    Clinical Epigenetics, 2015, 7
  • [32] DNA methylation-based age clocks: From age prediction to age reversion
    Noroozi, Rezvan
    Ghafouri-Fard, Soudeh
    Pisarek, Aleksandra
    Rudnicka, Joanna
    Spolnicka, Magdalena
    Branicki, Wojciech
    Taheri, Mohammad
    Pospiech, Ewelina
    AGEING RESEARCH REVIEWS, 2021, 68
  • [33] PUnNETS (Prediction of Unknown Neuroendocrine Tumour Site) - A DNA Methylation-Based Classifier
    Berner, A.
    Pipinikas, C.
    Karpathakis, A.
    Dibra, H. K.
    Moghul, I
    Webster, A.
    Luong, T., V
    Thirlwell, C.
    NEUROENDOCRINOLOGY, 2019, 108 : 24 - 24
  • [34] DNA methylation-based age prediction from various tissues and body fluids
    Jung, Sang-Eun
    Shin, Kyoung-Jin
    Lee, Hwan Young
    BMB REPORTS, 2017, 50 (11) : 546 - 553
  • [35] DNA Methylation-Based Subtype Prediction for Pediatric Acute Lymphoblastic Leukemia (ALL)
    Nordlund, Jessica
    Backlin, Christofer
    Zachariadis, Vasilios
    Cavelier, Lucia
    Dahlberg, Johan
    Ofverholm, Ingegerd
    Barbany, Gisela
    Nordgren, Ann
    Overnas, Elin
    Abrahamsson, Jonas
    Flaegstad, Trond
    Heyman, Mats
    Jonsson, Olafur G.
    Kanerva, Jukka A.
    Larsson, Rolf
    Palle, Josefine
    Schmiegelow, Kjeld
    Gustafsson, Mats G.
    Lonnerholm, Gudmar
    Forestier, Erik
    Syvanen, Ann-Christine
    BLOOD, 2014, 124 (21)
  • [36] A collaborative exercise on DNA methylation-based age prediction and body fluid typing
    Lee, Ji Eun
    Lee, Jeong Min
    Naue, Jana
    Fleckhaus, Jan
    Freire-Aradas, Ana
    Neubauer, Jacqueline
    Pospiech, Ewelina
    McCord, Bruce
    Kalamara, Vivian
    Gauthier, Quentin
    Mills, Carly
    Cao, Yijian
    Wang, Zheng
    Oh, Yu Na
    Feng, Lei
    Schneider, Peter M.
    Phillips, Christopher
    Haas, Cordula
    Pisarek, Aleksandra
    Branicki, Wojciech
    Podini, Daniele
    Vidaki, Athina
    Tejero, Nicole Fernandez
    Ambroa-Conde, Adrian
    Mosquera-Miguel, Ana
    Lareu, Maria Victoria
    Hou, Yiping
    Lee, Joo Young
    Lee, Hwan Young
    FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2022, 57
  • [37] DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma
    Filipski, Katharina
    Scherer, Michael
    Zeiner, Kim N.
    Bucher, Andreas
    Kleemann, Johannes
    Jurmeister, Philipp
    Hartung, Tabea, I
    Meissner, Markus
    Plate, Karl H.
    Fenton, Tim R.
    Walter, Jorn
    Tierling, Sascha
    Schilling, Bastian
    Zeiner, Pia S.
    Harter, Patrick N.
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 (07)
  • [38] DNA Methylation-Based as a Prediction of Therapeutic Outcome in Serum of Patients with Breast Cancer
    Martinez-Galan, J.
    Delgado, J. R.
    Torres-Torres, B.
    Lopez-Penalver, J.
    Del Moral, R.
    Ruiz de Almodovar, M.
    EUROPEAN JOURNAL OF CANCER, 2012, 48 : 138 - 138
  • [39] DNA methylation-based reclassification of olfactory neuroblastoma
    David Capper
    Nils W. Engel
    Damian Stichel
    Matt Lechner
    Stefanie Glöss
    Simone Schmid
    Christian Koelsche
    Daniel Schrimpf
    Judith Niesen
    Annika K. Wefers
    David T. W. Jones
    Martin Sill
    Oliver Weigert
    Keith L. Ligon
    Adriana Olar
    Arend Koch
    Martin Forster
    Sebastian Moran
    Oscar M. Tirado
    Miguel Sáinz-Jaspeado
    Jaume Mora
    Manel Esteller
    Javier Alonso
    Xavier Garcia del Muro
    Werner Paulus
    Jörg Felsberg
    Guido Reifenberger
    Markus Glatzel
    Stephan Frank
    Camelia M. Monoranu
    Valerie J. Lund
    Andreas von Deimling
    Stefan Pfister
    Rolf Buslei
    Julika Ribbat-Idel
    Sven Perner
    Volker Gudziol
    Matthias Meinhardt
    Ulrich Schüller
    Acta Neuropathologica, 2018, 136 : 255 - 271
  • [40] DNA methylation-based forensic tissue identification
    Frumkin, Dan
    Wasserstrom, Adam
    Budowle, Bruce
    Davidson, Ariane
    FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2011, 5 (05) : 517 - 524