Image Denoising Using Convolutional Sparse Coding Network with Dry Friction

被引:0
|
作者
Zhang, Yali [1 ]
Wang, Xiaofan [1 ]
Wang, Fengpin [1 ]
Wang, Jinjia [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Peoples R China
来源
关键词
Image denoising; Convolutional sparse coding; Iterative shrinkage thresholding algorithms; Dry friction; ALGORITHMS;
D O I
10.1007/978-3-031-26319-4_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional sparse coding model has been successfully used in some tasks such as signal or image processing and classification. The recently proposed supervised convolutional sparse coding network (CSCNet) model based on the Minimum Mean Square Error (MMSE) approximation shows the similar PSNR value for image denoising problem with state of the art methods while using much fewer parameters. The CSCNet uses the learning convolutional iterative shrinkage-thresholding algorithms (LISTA) based on the convolutional dictionary setting. However, LISTA methods are known to converge to local minima. In this paper we proposed one novel algorithm based on LISTA with dry friction, named LISTDFA. The dry friction enters the LISTDFA algorithm through proximal mapping. Due to the nature of dry friction, the LISTDFA algorithm is proven to converge in a finite time. The corresponding iterative neural network preserves the computational simplicity of the original CSCNet, and can reach a better local minima practically.
引用
收藏
页码:587 / 601
页数:15
相关论文
共 50 条
  • [41] Image Denoising Using Sparse Representations
    Valiollahzadeh, SeyyedMajid
    Firouzi, Hamed
    Babaie-Zadeh, Massoud
    Jutten, Christian
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 557 - +
  • [42] Imaging in scattering media using correlation image sensors and sparse convolutional coding
    Heide, Felix
    Xiao, Lei
    Kolb, Andreas
    Hullin, Matthias B.
    Heidrich, Wolfgang
    OPTICS EXPRESS, 2014, 22 (21): : 26338 - 26350
  • [43] HIERARCHICAL SUPERPIXEL RELATION GRAPH COMBINED WITH CONVOLUTIONAL SPARSE CODING FOR SELF-SUPERVISED HYPERSPECTRAL IMAGE DENOISING
    Jiang, Zhongshun
    Qian, Qipeng
    Qiu, Yi
    Qian, Yuntao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5379 - 5382
  • [44] Convolutional Sparse Coding for Image Super-resolution
    Gu, Shuhang
    Zuo, Wangmeng
    Xie, Qi
    Meng, Deyu
    Feng, Xiangchu
    Zhang, Lei
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1823 - 1831
  • [45] Convolutional Sparse Coding Using Wavelets for Single Image Super-Resolution
    Ahmed, Awais
    Kun, She
    Memon, Raheel Ahmed
    Ahmed, Junaid
    Tefera, Getnet
    IEEE ACCESS, 2019, 7 : 121350 - 121359
  • [46] CONVOLUTIONAL SPARSE CODING CLASSIFICATION MODEL FOR IMAGE CLASSIFICATION
    Chen, Boheng
    Li, Jie
    Ma, Biyun
    Wei, Gang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1918 - 1922
  • [47] Sparse Coding Image Denoising Based on Saliency Map Weight
    Zhao, Haohua
    Zhang, Liqing
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 308 - 315
  • [48] Mixed Integer Programming For Sparse Coding: Application to Image Denoising
    Liu, Yuan
    Canu, Stephan
    Honeine, Paul
    Ruan, Su
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (03): : 354 - 365
  • [49] Damage localization with Lamb waves using dense convolutional sparse coding network
    Zhang, Han
    Hua, Jiadong
    Lin, Jing
    Tong, Tong
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (02): : 1180 - 1192
  • [50] RECOGNITION AND RETRIEVAL OF SOUND EVENTS USING SPARSE CODING CONVOLUTIONAL NEURAL NETWORK
    Wang, Chien-Yao
    Santoso, Andri
    Mathulaprangsan, Seksan
    Chiang, Chin-Chin
    Wu, Chung-Hsien
    Wang, Jia-Ching
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 589 - 594