Glyoxylic-Acetal-Based Electrolytes for Sodium-Ion Batteries and Sodium-Ion Capacitors

被引:12
|
作者
Leibing, Christian [1 ,2 ]
Leistenschneider, Desiree [1 ,2 ]
Neumann, Christof [2 ,3 ]
Oschatz, Martin [1 ,2 ]
Turchanin, Andrey [2 ,3 ]
Balducci, Andrea [1 ,2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany
[2] Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Inst Phys Chem, Lessingstr 10, D-07743 Jena, Germany
关键词
Energy storage; sodium-ion battery; sodium-ion capacitor; glyoxal; electrolyte; ENERGY-STORAGE; SOLVENTS; GLYOXAL;
D O I
10.1002/cssc.202300161
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A comprehensive study on the properties and implementation of glyoxylic-acetals in sodium-ion energy storage systems is presented. Electrolytes containing 1,1,2,2-tetramethoxyethane (tetramethoxyglyoxal, TMG), 1,1,2,2-tetraethoxyethane (tetraethoxyglyoxal, TEG) and a mixture of the latter with propylene carbonate (PC) exhibit increased thermal stabilities and higher flash points compared to classical electrolytes based on carbonates as solvents. Due to its favorable properties, 1 m NaTFSI in TEG/PC (3 : 7), has been selected and used for sodium-ion energy storage systems based on a Prussian Blue (PB) positive electrode and a hard carbon (HC) negative electrode. Compared to conventional electrolyte (based on a 1 : 1 mixture of ethylene carbonate, EC, and dimethyl carbonate, DMC), this glyoxylic-acetal electrolyte provides competitive capacity and prolonged cycle life. Postmortem XPS analysis indicates that the electrode-electrolyte interphases formed in presence of TEG are thicker and presumably more protective, inhibiting typical degradation processes of the electrodes. Furthermore, it is demonstrated that the suitable properties of TEG on the cycling stability can also be exploited for the construction of highly stable sodium-ion capacitors.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Recent progress in multilayer solid electrolytes for sodium-ion batteries
    Shao, Binhang
    Li, Shijie
    Yang, Chen
    Fan, Jiancheng
    Ge, Jianbang
    Yu, Zhijing
    Wang, Wei
    Jiao, Shuqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (04) : 2378 - 2402
  • [32] Sodium-ion conducting polymer electrolytes
    Zhi-Yong Li
    Zhuo Li
    Jia-Long Fu
    Xin Guo
    Rare Metals, 2023, 42 : 1 - 16
  • [33] Current trends and future challenges of electrolytes for sodium-ion batteries
    Vignarooban, K.
    Kushagra, R.
    Elango, A.
    Badami, P.
    Mellander, B. -E.
    Xu, X.
    Tucker, T. G.
    Nam, C.
    Kannan, A. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) : 2829 - 2846
  • [34] Ionic Liquid-Based Electrolytes for Aluminum/Magnesium/Sodium-Ion Batteries
    Zhu, Na
    Zhang, Kun
    Wu, Feng
    Bai, Ying
    Wu, Chuan
    ENERGY MATERIAL ADVANCES, 2021, 2021
  • [35] Sodium-ion batteries: present and future
    Hwang, Jang-Yeon
    Myung, Seung-Taek
    Sun, Yang-Kook
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) : 3529 - 3614
  • [36] Conversion reactions for sodium-ion batteries
    Klein, Franziska
    Jache, Birte
    Bhide, Amrtha
    Adelhelm, Philipp
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (38) : 15876 - 15887
  • [37] Advancement in sodium-ion rechargeable batteries
    Tang, Jialiang
    Dysart, Arthur D.
    Pol, Vilas G.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2015, 9 : 34 - 41
  • [38] Alloy anodes for sodium-ion batteries
    Shu-Min Zheng
    Yan-Ru Tian
    Ya-Xia Liu
    Shuang Wang
    Chao-Quan Hu
    Bao Wang
    Kai-Ming Wang
    Rare Metals, 2021, 40 : 272 - 289
  • [39] Nonflammable Ether and Phosphate-Based Liquid Electrolytes for Sodium-Ion Batteries
    van Ekeren, Wessel W. A.
    Pereira, Alexandre M.
    Albuquerque, Marcelo
    Costa, Luciano T.
    Younesi, Reza
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (41) : 56355 - 56365
  • [40] 2021 roadmap for sodium-ion batteries
    Tapia-Ruiz, Nuria
    Armstrong, A. Robert
    Alptekin, Hande
    Amores, Marco A.
    Au, Heather
    Barker, Jerry
    Boston, Rebecca
    Brant, William R.
    Brittain, Jake M.
    Chen, Yue
    Chhowalla, Manish
    Choi, Yong-Seok
    Costa, Sara I. R.
    Crespo Ribadeneyra, Maria
    Cussen, Serena A.
    Cussen, Edmund J.
    David, William I. F.
    Desai, Aamod, V
    Dickson, Stewart A. M.
    Eweka, Emmanuel, I
    Forero-Saboya, Juan D.
    Grey, Clare P.
    Griffin, John M.
    Gross, Peter
    Hua, Xiao
    Irvine, John T. S.
    Johansson, Patrik
    Jones, Martin O.
    Karlsmo, Martin
    Kendrick, Emma
    Kim, Eunjeong
    Kolosov, Oleg, V
    Li, Zhuangnan
    Mertens, Stijn F. L.
    Mogensen, Ronnie
    Monconduit, Laure
    Morris, Russell E.
    Naylor, Andrew J.
    Nikman, Shahin
    O'Keefe, Christopher A.
    Ould, Darren M. C.
    Palgrave, R. G.
    Poizot, Philippe
    Ponrouch, Alexandre
    Renault, Steven
    Reynolds, Emily M.
    Rudola, Ashish
    Sayers, Ruth
    Scanlon, David O.
    Sen, S.
    JOURNAL OF PHYSICS-ENERGY, 2021, 3 (03):