Heat kernels for time-dependent non-symmetric mixed L?vy-type operators

被引:1
|
作者
Chen, Zhen-Qing [1 ]
Zhang, Xicheng [2 ,3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
关键词
Heat kernel estimates; Non-symmetric nonlocal operator; Dini continuity; TRANSITION-PROBABILITY DENSITY; SYMMETRIC JUMP-PROCESSES; LEVY-TYPE PROCESSES; FUNDAMENTAL SOLUTION;
D O I
10.1016/j.jfa.2023.109947
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish the existence, uniqueness and reg-ularity of heat kernels to a large class of time-inhomogeneous non-symmetric nonlocal operators with Dini's continuous ker-nels. Moreover, quantitative estimates including two-sided es-timates, gradient and fractional derivative estimates of the heat kernels are obtained. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:58
相关论文
共 50 条