Remote Sensing Image Dehazing Using Heterogeneous Atmospheric Light Prior

被引:9
|
作者
He, Yufeng [1 ]
Li, Cuili [1 ]
Li, Xu [1 ]
机构
[1] Tarim Univ, Coll Informat Engn, Alaer 843300, Peoples R China
关键词
Atmospheric modeling; Remote sensing; Image restoration; Scattering; Imaging; Mathematical models; Image color analysis; Dehazing; remote sensing image; heterogeneous atmospheric light; image restoration; dark channel; QUALITY ASSESSMENT; HAZE REMOVAL; VISIBILITY; NETWORK;
D O I
10.1109/ACCESS.2023.3247967
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remote sensing images (RSIs) captured in haze weather will suffer from serious quality degradation with color distortion and contrast reduction, which creates numerous challenges for the utilization of RSIs. To address these issues, this paper proposes a novel haze removal algorithm, named HALP, for visible RSIs based on a heterogeneous atmospheric light prior and side window filter. HALP is comprised of two key components. Firstly, given the large imaging space of RSIs, the atmospheric light is treated as a globally non-uniform distribution instead of a global constant. Therefore, a simple and effective method for non-uniform atmospheric light estimation is presented, which utilizes the brightest pixel color in each local image patch as the atmospheric light of the local region. Secondly, a side window filter-based transmission estimation algorithm is proposed, which can effectively suppress the block effect in the transmission map caused by the large window of the minimum filter used in the dark channel algorithm. Experiments on both real-world and synthetic remote sensing haze images demonstrate the effectiveness of HALP. In terms of no-reference and full-reference image quality assessments, HALP yields excellent results, outperforming existing state-of-the-art algorithms, including physics-based and neural network-based methods. The visual comparison of dehazed results also shows that HALP can restore degraded RSIs with uneven haze, producing clear images with rich details and natural colors.
引用
收藏
页码:18805 / 18820
页数:16
相关论文
共 50 条
  • [21] A saliency guided remote sensing image dehazing network model
    Shi, Zhenghao
    Shao, Shuai
    Zhou, Zhaorun
    IET IMAGE PROCESSING, 2022, 16 (09) : 2483 - 2494
  • [22] Remote Sensing Image Dehazing Using Adaptive Region-Based Diffusion Models
    Huang, Yufeng
    Xiong, Shuai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [23] Dynamic Feature Attention Network for Remote Sensing Image Dehazing
    Hao, Yang
    Jiang, Wenzong
    Liu, Weifeng
    Cao, Weijia
    Liu, Baodi
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 8081 - 8094
  • [24] Frequency-Oriented Transformer for Remote Sensing Image Dehazing
    Zhang, Yaoqing
    He, Xin
    Zhan, Chunxia
    Li, Junjie
    SENSORS, 2024, 24 (12)
  • [25] Single Remote Sensing Image Dehazing Using Gaussian and Physics-Guided Process
    Bie, Yuxia
    Yang, Siqi
    Huang, Yufeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] Dynamic Feature Attention Network for Remote Sensing Image Dehazing
    Yang Hao
    Wenzong Jiang
    Weifeng Liu
    Weijia Cao
    Baodi Liu
    Neural Processing Letters, 2023, 55 : 8081 - 8094
  • [27] Learning an Effective Transformer for Remote Sensing Satellite Image Dehazing
    Song, Tianyu
    Fan, Shumin
    Li, Pengpeng
    Jin, Jiyu
    Jin, Guiyue
    Fan, Lei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [28] An image dehazing method using image gradient distortion prior
    Tian, Chuangeng
    Chen, Lei
    WIRELESS NETWORKS, 2021,
  • [29] "Pyramid Deep dehazing": An unsupervised single image dehazing method using deep image prior
    Xu, Lu
    Wei, Ying
    OPTICS AND LASER TECHNOLOGY, 2022, 148
  • [30] Remote sensing image dehazing using a wavelet-based generative adversarial networksRemote Sensing Image Dehazing using a Wavelet-based...G. Chen et al.
    Guangda Chen
    Yanfei Jia
    Yanjiang Yin
    Shuaiwei Fu
    Dejun Liu
    Tenghao Wang
    Scientific Reports, 15 (1)