Bird Detection on Power Transmission Lines Based on Improved YOLOv7

被引:2
|
作者
Jiang, Tingyao [1 ]
Zhao, Jian [1 ]
Wang, Min [2 ]
机构
[1] Three Gorges Univ, Coll Comp & Informat Technol, Yichang 443002, Peoples R China
[2] Three Gorges Polytech, Yichang 443000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 21期
关键词
dynamic convolutional; birds detection; YOLOv7; Alpha_GIoU;
D O I
10.3390/app132111940
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The safety of transmission lines is essential for ensuring the secure and dependable operation of the power grid. However, the harm caused by birds to transmission lines poses a direct threat to their safe operation. The main challenges in detecting birds on lines is that the detected targets are small, densely packed, and susceptible to environmental interference. We introduce a novel dynamic convolutional kernel specifically designed for detecting small and densely packed targets, the ODconv in the backbone of YOLOv7, to capture richer contextual information and improve performance. The substitution of Alpha_GIoU for CIoU in the original YOLOv7 network model serves to refine the loss function, decrease its parameters, and bolster the network's resilience. The results confirmed that the proposed YOLOv7 with ODConv reached mAP0.5, mAP0.5:0.95, and precision of up to 78.42%, 46.14%, and 73.56% respectively. In contrast to the base model, the enhanced model demonstrated a 2.58% rise in mAP0.5, a 0.72% improvement in mAP0.5:0.95, and an increased precision of 2.34%.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] An Enhanced Detection Method of PCB Defect Based on Improved YOLOv7
    Yang, Yujie
    Kang, Haiyan
    ELECTRONICS, 2023, 12 (09)
  • [42] Improved remote sensing image target detection based on YOLOv7
    XU Shuanglong
    CHEN Zhihong
    ZHANG Haiwei
    XUE Lifang
    SU Huijun
    Optoelectronics Letters, 2024, 20 (04) : 234 - 242
  • [43] An efficient method of pavement distress detection based on improved YOLOv7
    Yi, Cancan
    Liu, Jun
    Huang, Tao
    Xiao, Han
    Guan, Hui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [44] Dense Small Object Detection Based on an Improved YOLOv7 Model
    Chen, Xun
    Deng, Linyi
    Hu, Chao
    Xie, Tianyi
    Wang, Chengqi
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [45] SURFACE DEFECT DETECTION OF STEEL BASED ON IMPROVED YOLOv7 MODEL
    Teng, W. Z.
    Zhang, Y. J.
    Zhang, H. G.
    Gao, D. X.
    METALURGIJA, 2024, 63 (3-4): : 402 - 402
  • [46] Detection of potato seed buds based on an improved YOLOv7 model
    Zhang W.
    Zhang H.
    Liu S.
    Zeng X.
    Mu G.
    Zhang T.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (20): : 148 - 158
  • [47] Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
    Huang, Peile
    Wang, Shenghuai
    Chen, Jianyu
    Li, Weijie
    Peng, Xing
    SENSORS, 2023, 23 (16)
  • [48] Object Detection Based on Improved YOLOv7 for UAV Aerial Image
    Cui, Liqun
    Cao, Huawei
    Computer Engineering and Applications, 60 (20): : 189 - 197
  • [49] Detection of Camellia oleifera fruit maturity based on improved YOLOv7
    Chen F.
    Chen C.
    Zhu X.
    Shen D.
    Zhang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (05): : 177 - 186
  • [50] A Steel Surface Defect Detection Algorithm Based on Improved YOLOv7
    Mao, Yihai
    Zhang, Hongyi
    Gao, Xingen
    Luan, Shen
    Lin, Yuxing
    Qi, Xuanhao
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1096 - 1101