Study on mechanical properties and damage characteristics of cemented waste rock-tailing backfill

被引:5
|
作者
Chen, Guan [1 ]
Yao, Nan [1 ]
Ye, Yicheng [1 ,2 ]
Fu, Fanghui [1 ]
Hu, Nanyan [1 ]
Zhang, Zhen [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Resources & Environm Engn, Wuhan 430081, Peoples R China
[2] Ind Safety Engn Technol Res Ctr Hubei Prov, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Cemented backfill; Mechanical properties; Acoustic emission; Microstructure; Damage model; ACOUSTIC-EMISSION CHARACTERISTICS; PASTE BACKFILL; STRENGTH;
D O I
10.1007/s11356-023-29532-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tailing and waste rock-cemented filling is an effective way to solve the problem solid waste in mines. In this paper, the effects of waste rock content and cement-sand ratio on the properties of tailing-waste rock-cemented filling materials and cemented backfill were analyzed based on the single-factor multi-level experimental design method. The results show that with the increase of waste rock content, the fluidity of the filling slurry increases first and then decreases, the bleeding rate increased gradually, and the compressive strength of the backfill increases first and then decreases. When the waste rock content is 60% and the cement-sand ratio is 1:4, the cemented backfill has higher compressive strength. With the increase of waste rock content, the interface failure area between waste rock particles and cementitious matrix under loading gradually increases, the crack extension is more complex, and the acoustic emission (AE) ringing count is higher. Microstructural analysis showed that the main hydration products in the cemented backfill were calcium silicate hydrated (C-S-H) gels, ettringite (AFt), and calcium hydroxide (Ca(OH)2). Because there is more content of hydration products, the microstructure of the cemented backfill was denser and the compressive strength was higher. Based on the results of uniaxial compression tests, the damage constitutive model of cemented backfill with different waste rock contents and cement-sand ratios was established, which could provide guidance for the design and safety production of phosphate rock filling engineering.
引用
收藏
页码:102181 / 102197
页数:17
相关论文
共 50 条
  • [21] Analysis of the mechanical properties and damage characteristics of continuously graded high-strength cemented backfill
    Xia, Yu
    Lu, Aihong
    Journal of Mining and Strata Control Engineering, 2023, 5 (01)
  • [22] Effect of curing temperature on the mechanical properties and pore structure of cemented backfill materials with waste rock-tailings
    Gao, Rugao
    Wang, Weijun
    Xiong, Xin
    Li, Jingjing
    Xu, Chun
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 409
  • [23] Rheological Properties of Cemented Tailing Backfill and the Construction of a Prediction Model
    Lang, Liu
    Song, Ki-Il
    Lao, Dezheng
    Kwon, Tae-Hyuk
    MATERIALS, 2015, 8 (05) : 2076 - 2092
  • [24] Mechanical properties and damage mode of cemented tailings backfill in an acidic environment
    Huang, Y.
    Wang, G.
    Rao, Y.
    Liu, W.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2021, 121 (06) : 317 - 324
  • [25] Preparation and Mechanical Properties of Cemented Uranium Tailing Backfill Based on Alkali-Activated Slag
    Wang, Fulin
    Chen, Guoliang
    Ji, Lu
    Yuan, Zhengping
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
  • [26] Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill
    Cao, Shuai
    Song, Weidong
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2017, 166 : 62 - 68
  • [27] Effect of early load on mechanical properties and damage of cemented gangue backfill
    Feng, Guorui
    Xie, Wenshuo
    Guo, Yuxia
    Guo, Jun
    Ran, Hongyu
    Zhao, Yonghui
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (04): : 775 - 784
  • [28] Effect of water saturation on mechanical characteristics and damage behavior of cemented paste backfill
    Wang, Jie
    Zhang, Chi
    Fu, Jianxin
    Song, Weidong
    Zhang, Yongfang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 6624 - 6639
  • [29] Damage evolution model of cemented tailing backfill based on acoustic emission energy
    Wang, Liang
    Xie, JinCheng
    Qiao, DengPan
    Wang, Jun
    Huang, Fei
    3RD INTERNATIONAL CONFERENCE ON AIR POLLUTION AND ENVIRONMENTAL ENGINEERING, 2020, 631
  • [30] Damage constitutive models and damage evolution of cemented tailings and waste-rock backfill under impact loading
    Yin, Shenghua
    Zeng, Jialu
    Yan, Zepeng
    Wang, Leiming
    Chen, Wei
    Chen, Dapeng
    Yang, Jian
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 460