A Survey of Adversarial Defenses and Robustness in NLP

被引:36
|
作者
Goyal, Shreya [1 ]
Doddapaneni, Sumanth [1 ]
Khapra, Mitesh M. [1 ]
Ravindran, Balaraman [1 ]
机构
[1] Indian Inst Technol Madras, Bhupat & Jyoti Mehta Sch Biosci, Robert Bosch Ctr Data Sci & AI, Chennai 600036, Tamil Nadu, India
关键词
Adversarial attacks; adversarial defenses; perturbations; NLP; DEEP NEURAL-NETWORKS; COMPUTER VISION; ATTACKS;
D O I
10.1145/3593042
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the past few years, it has become increasingly evident that deep neural networks are not resilient enough to withstand adversarial perturbations in input data, leaving them vulnerable to attack. Various authors have proposed strong adversarial attacks for computer vision and Natural Language Processing (NLP) tasks. As a response, many defense mechanisms have also been proposed to prevent these networks from failing. The significance of defending neural networks against adversarial attacks lies in ensuring that the model's predictions remain unchanged even if the input data is perturbed. Several methods for adversarial defense in NLP have been proposed, catering to different NLP tasks such as text classification, named entity recognition, and natural language inference. Some of these methods not only defend neural networks against adversarial attacks but also act as a regularization mechanism during training, saving the model from overfitting. This survey aims to review the various methods proposed for adversarial defenses in NLP over the past few years by introducing a novel taxonomy. The survey also highlights the fragility of advanced deep neural networks in NLP and the challenges involved in defending them.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] Recent Advances in Adversarial Training for Adversarial Robustness
    Bai, Tao
    Luo, Jinqi
    Zhao, Jun
    Wen, Bihan
    Wang, Qian
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4312 - 4321
  • [42] Robustness Tokens: Towards Adversarial Robustness of Transformers
    Pulfer, Brian
    Belousov, Yury
    Voloshynovskiy, Slava
    COMPUTER VISION - ECCV 2024, PT LIX, 2025, 15117 : 110 - 127
  • [43] DeepRobust: a Platform for Adversarial Attacks and Defenses
    Li, Yaxin
    Jin, Wei
    Xu, Han
    Tang, Jiliang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 16078 - 16080
  • [44] TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP
    Morris, John X.
    Lifland, Eli
    Yoo, Jin Yong
    Grigsby, Jake
    Jin, Di
    Qi, Yanjun
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING: SYSTEM DEMONSTRATIONS, 2020, : 119 - 126
  • [45] Adversarial Attacks and Defenses in Deep Learning
    Ren, Kui
    Zheng, Tianhang
    Qin, Zhan
    Liu, Xue
    ENGINEERING, 2020, 6 (03) : 346 - 360
  • [46] Towards Universal Adversarial Examples and Defenses
    Rakin, Adnan Siraj
    Wang, Ye
    Aeron, Shuchin
    Koike-Akino, Toshiaki
    Moulin, Pierre
    Parsons, Kieran
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [47] Dynamic defenses and the transferability of adversarial examples
    Thomas, Sam
    Koleini, Farnoosh
    Tabrizi, Nasseh
    2022 IEEE 4TH INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS, AND APPLICATIONS, TPS-ISA, 2022, : 276 - 284
  • [48] On Adaptive Attacks to Adversarial Example Defenses
    Tramer, Florian
    Carlini, Nicholas
    Brendel, Wieland
    Madry, Aleksander
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [49] Layerwise universal adversarial attack on NLP models
    Tsymboi, Olga
    Malaev, Danil
    Petrovskii, Andrei
    Oseledets, Ivan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 129 - 143
  • [50] Robustness Gym: Unifying the NLP Evaluation Landscape
    Goel, Karan
    Rajani, Nazneen
    Vig, Jesse
    Taschdjian, Zachary
    Bansal, Mohit
    Re, Christopher
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES: DEMONSTRATIONS (NAACL-HLT 2021), 2021, : 42 - 55