Knowledge-based mechanistic modeling accurately predicts disease progression with gefitinib in EGFR-mutant lung adenocarcinoma

被引:5
|
作者
L'Hostis, Adele [1 ]
Palgen, Jean-Louis [1 ]
Perrillat-Mercerot, Angelique [1 ]
Peyronnet, Emmanuel [1 ]
Jacob, Evgueni [1 ]
Bosley, James [1 ]
Duruisseaux, Michael [2 ,3 ,4 ]
Toueg, Raphael [5 ]
Lefevre, Lucile [5 ]
Kahoul, Riad [1 ]
Ceres, Nicoletta [1 ]
Monteiro, Claudio [1 ]
机构
[1] Novadiscovery SA, Pl Giovanni Verrazzano, F-69009 Lyon, Rhone, France
[2] Louis Pradel Hosp, Hosp Civils Lyon Canc Inst, Resp Dept & Early Phase, F-69100 Lyon, France
[3] Canc Res Ctr Lyon, UMR INSERM CNRS 1052 5286, Lyon, France
[4] Univ Claude Bernard Lyon 1, Univ Lyon, Lyon, France
[5] Janssen Cilag, 1, Rue Camille Desmoulins TSA, F-60009 Issy Les Moulineaux 9, France
关键词
MAP KINASE; CANCER; CHEMOTHERAPY; MUTATIONS; AFATINIB; STAGE; CELLS;
D O I
10.1038/s41540-023-00292-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung adenocarcinoma (LUAD) is associated with a low survival rate at advanced stages. Although the development of targeted therapies has improved outcomes in LUAD patients with identified and specific genetic alterations, such as activating mutations on the epidermal growth factor receptor gene (EGFR), the emergence of tumor resistance eventually occurs in all patients and this is driving the development of new therapies. In this paper, we present the In Silico EGFR-mutant LUAD (ISELA) model that links LUAD patients' individual characteristics, including tumor genetic heterogeneity, to tumor size evolution and tumor progression over time under first generation EGFR tyrosine kinase inhibitor gefitinib. This translational mechanistic model gathers extensive knowledge on LUAD and was calibrated on multiple scales, including in vitro, human tumor xenograft mouse and human, reproducing more than 90% of the experimental data identified. Moreover, with 98.5% coverage and 99.4% negative logrank tests, the model accurately reproduced the time to progression from the Lux-Lung 7 clinical trial, which was unused in calibration, thus supporting the model high predictive value. This knowledge-based mechanistic model could be a valuable tool in the development of new therapies targeting EGFR-mutant LUAD as a foundation for the generation of synthetic control arms.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Erlotinib versus gefitinib for brain metastases in Asian patients with exon 19 EGFR-mutant lung adenocarcinoma: a retrospective, multicenter study
    Ye Jiang
    Jing Zhang
    Juanjuan Huang
    Bo Xu
    Ning Li
    Lei Cao
    Mingdong Zhao
    BMC Pulmonary Medicine, 18
  • [22] Dynamics of EGFR Mutation Load in Plasma for Prediction of Treatment Response and Disease Progression in Patients With EGFR-Mutant Lung Adenocarcinoma (vol 19, pg 387, 2018)
    Taus, Alvaro
    Camacho, Laura
    Rocha, Pedro
    Hardy-Werbin, Max
    Pijuan, Lara
    Piquer, Gabriel
    Lopez, Eva
    Dalmases, Alba
    Longaron, Raquel
    Clave, Sergi
    Salido, Marta
    Albanell, Joan
    Bellosillo, Beatriz
    Arriola, Edurne
    CLINICAL LUNG CANCER, 2020, 21 (04) : E233 - E233
  • [23] Refined Stratification Based on Baseline Concomitant Mutations and Longitudinal Circulating Tumor DNA Monitoring in Advanced EGFR-Mutant Lung Adenocarcinoma Under Gefitinib Treatment
    Duan, Jianchun
    Xu, JiaChen
    Wang, Zhijie
    Bai, Hua
    Cheng, Ying
    An, Tongtong
    Gao, Hongjun
    Wang, Kai
    Zhou, Qing
    Hu, Yanping
    Song, Yong
    Ding, Cuimin
    Peng, Feng
    Liang, Li
    Hu, Yi
    Huang, Cheng
    Zhou, Caicun
    Shi, Yuankai
    Han, Jiefei
    Wang, Di
    Tian, Yanhua
    Yang, Zhenlin
    Zhang, Li
    Chuai, Shaokun
    Ye, Junyi
    Zhu, Guanshan
    Zhao, Junhui
    Wu, Yi-Long
    Wang, Jie
    JOURNAL OF THORACIC ONCOLOGY, 2020, 15 (12) : 1857 - 1870
  • [24] MET Status before Tyrosine Kinase Inhibitor (TKI)-Start Predicts Treatment Responses in EGFR-Mutant Lung Adenocarcinoma
    Meyer, A-S K.
    Marienfeld, R.
    Rudiger, S.
    Muller, P.
    Moller, P.
    Schumann, C.
    Lennerz, J. K.
    MODERN PATHOLOGY, 2014, 27 : 488A - 488A
  • [25] MET Status before Tyrosine Kinase Inhibitor (TKI)-Start Predicts Treatment Responses in EGFR-Mutant Lung Adenocarcinoma
    Meyer, A-S K.
    Marienfeld, R.
    Rudiger, S.
    Muller, P.
    Moller, P.
    Schumann, C.
    Lennerz, J. K.
    LABORATORY INVESTIGATION, 2014, 94 : 488A - 488A
  • [26] Systemic Nocardiosis Mimicking Disease Flare-up after Discontinuation of Gefitinib in a Patient with EGFR-Mutant Lung Cancer
    Choi, Mihong
    Lee, Youngjoo
    Hwang, Sang Hyun
    Lee, Jin Soo
    TUBERCULOSIS AND RESPIRATORY DISEASES, 2014, 77 (06) : 271 - 273
  • [27] Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma
    Iuchi, T.
    Shingyoji, M.
    Sakaida, T.
    Hatano, K.
    Nagano, O.
    Itakura, M.
    Kageyama, H.
    Yokoi, S.
    Hasegawa, Y.
    Kawasaki, K.
    Iizasa, T.
    LUNG CANCER, 2013, 82 (02) : 282 - 287
  • [28] Longitudinal nonlinear mixed effects modeling of EGFR mutations in ctDNA as predictor of disease progression in treatment of EGFR-mutant non-small cell lung cancer
    Janssen, Julie M.
    Verheijen, Remy B.
    van Duijl, Tirsa T.
    Lin, Lishi
    van den Heuvel, Michel M.
    Beijnen, Jos H.
    Steeghs, Neeltje
    van den Broek, Daan
    Huitema, Alwin D. R.
    Dorlo, Thomas P. C.
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2022, 15 (08): : 1916 - 1925
  • [29] HIF-1α-HPRT1 axis promotes tumorigenesis and gefitinib resistance by enhancing purine metabolism in EGFR-mutant lung adenocarcinoma
    Geng, Pengyu
    Ye, Fei
    Dou, Peng
    Hu, Chunxiu
    He, Jiarui
    Zhao, Jinhui
    Li, Qi
    Bao, Miao
    Li, Xiangnan
    Liu, Xinyu
    Xu, Guowang
    JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2024, 43 (01)
  • [30] Tumor Suppressor Gene Alterations Identified at Disease Progression Impact Outcomes in Patients with EGFR-mutant Lung Cancer
    Stockhammer, P.
    Grant, M.
    Wurtz, A.
    Foggetti, G.
    Chung, S.
    Li, F.
    Gettinger, S.
    Politi, K.
    Goldberg, S.
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (09) : S462 - S463