Bioinspired Synthesis of Silver Nanoparticles for the Remediation of Toxic Pollutants and Enhanced Antibacterial Activity

被引:4
|
作者
Mandal, Sujata [1 ]
Hwang, Sangchul [1 ]
Marpu, Sreekar B. [2 ]
Omary, Mohammad A. [2 ]
Prybutok, Victor [3 ]
Shi, Sheldon Q. [4 ]
机构
[1] Texas State Univ, Ingram Sch Engn, San Marcos, TX 78666 USA
[2] Univ North Texas, Dept Chem, Denton, TX 76207 USA
[3] Univ North Texas, G Brint Ryan Coll Business, Denton, TX 76207 USA
[4] Univ North Texas, Dept Mech Engn, Denton, TX 76207 USA
关键词
silver-modified activated carbon; heavy metals; dye; bacteria; adsorption; MULTIWALLED CARBON NANOTUBES; HEAVY-METAL IONS; ACTIVATED CARBON; CONGO RED; AQUEOUS-SOLUTION; PHOTOCATALYTIC DEGRADATION; REMOVAL; ADSORPTION; ADSORBENT; KENAF;
D O I
10.3390/biom13071054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver nanoparticles (AgNPs) within a chitosan (CS)-modified, high-surface-area activated carbon derived from kenaf (KAC), using a unique self-activation method. The even distribution of AgNPs was visible in the scanning electron microscopy images and a Fourier transform infra red study demonstrated major absorption peaks. The experimental results revealed that KA-CS-AgNPs exhibited exceptional adsorption efficiency for copper (Cu2+), lead (Pb2+), and Congo Red dye (CR), and showed potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The maximum adsorption capacity (mg g(-1)) of KAC-CS-AgNPs was 71.5 for Cu2+, 72.3 for Pb2+, and 75.9 for CR, and the adsorption phenomena followed on the Freundlich and Langmuir isotherm models and the second-order kinetic model (R-2 > 0.99). KAC-CS-AgNPs also exhibited excellent reusability of up to four consecutive cycles with minor losses in adsorption ability. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic in nature. The bacterial inactivation tests demonstrated that KAC-CS-AgNPs had a strong bactericidal effect on both E. coli and S. aureus, with MIC calculated for E. coli and S. aureus as 32 & mu;g mL(-1) and 44 & mu;g mL(-1), respectively. The synthesized bioinspired nanocomposite KAC-CS-AgNPs could be an innovative solution for effective and sustainable wastewater treatment and has great potential for commercial applications.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity
    Patil, Rupali S.
    Kokate, Mangesh R.
    Kolekar, Sanjay S.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2012, 91 : 234 - 238
  • [12] Synthesis and characterization of silver nanoparticles for antibacterial activity
    Sadeghi, B.
    Jamali, M.
    Kia, Sh.
    Nia, A. Amini
    Ghafari, S.
    INTERNATIONAL JOURNAL OF NANO DIMENSION, 2010, 1 (02) : 119 - 124
  • [13] Green Synthesis of Silver Nanoparticles and Their Antibacterial Activity
    Balazova, L'udmila
    Cizmarova, Anna
    Balaz, Matej
    Daneu, Nina
    Salayova, Aneta
    Bedlovicova, Zdenka
    Tkacikova, L'udmila
    CHEMICKE LISTY, 2022, 116 (02): : 135 - 140
  • [14] Silver Nanoparticles: Synthesis, Characterization and Antibacterial Activity
    Calinescu, Ioan
    Mustatea, Gabriel
    Gavrila, Adina Ionuta
    Dobre, Alina
    Pop, Cristina
    REVISTA DE CHIMIE, 2014, 65 (01): : 15 - 19
  • [15] Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity
    Potbhare, Ajay K.
    Umekar, Mayuri S.
    Chouke, Prashant B.
    Bagade, Mahendra B.
    Aziz, S. K. Tarik
    Abdala, Ahmed A.
    Chaudhary, Ratiram G.
    MATERIALS TODAY-PROCEEDINGS, 2020, 29 : 720 - 725
  • [16] Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity
    Liu, Lei
    Liu, Jincheng
    Wang, Yinjie
    Yan, Xiaoli
    Sun, Darren Delai
    NEW JOURNAL OF CHEMISTRY, 2011, 35 (07) : 1418 - 1423
  • [17] Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity
    Lyu, Yongbo
    Yu, Mengchao
    Liu, Qisong
    Zhang, Qingmei
    Liu, Zhanhong
    Tian, Ye
    Li, Defu
    Mu, Changdao
    CARBOHYDRATE POLYMERS, 2020, 230 (230)
  • [18] Bio-synthesis of silver nanoparticles with antibacterial activity
    Ren, Yan-yu
    Yang, Hui
    Wang, Tao
    Wang, Chuang
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 235
  • [19] Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity
    Bhakya, S.
    Muthukrishnan, S.
    Sukumaran, M.
    Muthukumar, M.
    APPLIED NANOSCIENCE, 2016, 6 (05) : 755 - 766
  • [20] Silver colloid nanoparticles:: Synthesis, characterization, and their antibacterial activity
    Panacek, Ales
    Kvitek, Libor
    Prucek, Robert
    Kolar, Milan
    Vecerova, Renata
    Pizurova, Nadezda
    Sharma, Virender K.
    Nevecna, Tat'jana
    Zboril, Radek
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (33): : 16248 - 16253