Deep Latent Factor Model for Spatio-Temporal Forecasting

被引:0
|
作者
Koo, Wonmo [1 ]
Ma, Eun-Yeol [1 ]
Kim, Heeyoung [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Ind & Syst Engn, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Beta-Bernoulli process; Gaussian process; Latent factor model; Recurrent neural network; Spatio-temporal forecasting; Stochastic variational inference;
D O I
10.1080/00401706.2024.2322661
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Latent factor models can perform spatio-temporal forecasting (i.e., predicting future responses at unmeasured as well as measured locations) by modeling temporal dependence using latent factors and considering spatial dependence using a spatial prior on factor loadings. However, they may fail to capture complex spatio-temporal dependence because the latent factors are typically assumed to follow a classical linear time series model, such as a vector autoregressive model. In this article, we propose a deep latent factor model for spatio-temporal forecasting that can model complex spatio-temporal dependence more flexibly by leveraging the high expressive power of a deep neural network. Specifically, the latent factors are modeled using a recurrent neural network and the factor loadings are modeled using a distance-based Gaussian process. The proposed model allows the number of latent factors to be inferred from the data using a beta-Bernoulli process, which enables computationally more efficient implementation compared to previous methods. We derive a stochastic variational inference algorithm for scalable inference of the proposed model and validate the model using simulated and real data examples.
引用
收藏
页码:470 / 482
页数:13
相关论文
共 50 条
  • [31] Improvements to seismicity forecasting based on a Bayesian spatio-temporal ETAS model
    Ebrahimian, Hossein
    Jalayer, Fatemeh
    Asayesh, Behnam Maleki
    Hainzl, Sebastian
    Zafarani, Hamid
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [32] A model-based approach for analog spatio-temporal dynamic forecasting
    McDermott, Patrick L.
    Wikle, Christopher K.
    [J]. ENVIRONMETRICS, 2016, 27 (02) : 70 - 82
  • [33] Evaluation Procedures for Forecasting with Spatio-Temporal Data
    Oliveira, Mariana
    Torgo, Luis
    Costa, Vitor Santos
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 703 - 718
  • [34] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [35] Spatio-temporal DeepKriging for interpolation and probabilistic forecasting
    Nag, Pratik
    Sun, Ying
    Reich, Brian J.
    [J]. SPATIAL STATISTICS, 2023, 57
  • [36] STIFF: A forecasting framework for spatio-temporal data
    Li, ZG
    Dunham, MH
    Xia, YQ
    [J]. MINING MULTIMEDIA AND COMPLEX DATA, 2003, 2797 : 183 - 198
  • [37] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    [J]. 2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770
  • [38] Spatio-Temporal Pyramid Networks for Traffic Forecasting
    Hu, Jia
    Wang, Chu
    Lin, Xianghong
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 339 - 354
  • [39] Spatio-Temporal Network for Sea Fog Forecasting
    Park, Jinhyeok
    Lee, Young Jae
    Jo, Yongwon
    Kim, Jaehoon
    Han, Jin Hyun
    Kim, Kuk Jin
    Kim, Young Taeg
    Kim, Seoung Bum
    [J]. SUSTAINABILITY, 2022, 14 (23)
  • [40] Spatio-temporal Event Forecasting and Precursor Identification
    Ning, Yue
    Zhao, Liang
    Chen, Feng
    Lu, Chang-Tien
    Rangwala, Huzefa
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 3237 - 3238