High Dose-Rate MeV Electron Beam from a Tightly-Focused Femtosecond IR Laser in Ambient Air

被引:0
|
作者
Vallieres, Simon [1 ,2 ]
Powell, Jeffrey [1 ]
Connell, Tanner [3 ]
Evans, Michael [3 ]
Lytova, Marianna [1 ]
Fillion-Gourdeau, Francois [1 ,4 ]
Fourmaux, Sylvain [1 ]
Payeur, Stephane [1 ]
Lassonde, Philippe [1 ]
MacLean, Steve [1 ,2 ,4 ]
Legare, Francois [1 ]
机构
[1] Inst Natl Rech Sci INRS, Ctr Energie Mat Telecommun, 1650 blvd Lionel-Boulet, Varennes, PQ J3X 1P7, Canada
[2] Univ Waterloo, Inst Quantum Comp IQC, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
[3] McGill Univ Hlth Ctr MUHC, Med Phys Unit, 1001 Blvd Decarie, Montreal, PQ H4A 3J1, Canada
[4] Infin Potential Labs LP, 485 Wes Graham Way, Waterloo, ON N2L 6R2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ambient air setup; high dose rate radiation; laser-plasma interactions; relativistic electron beams; ultrafast optics; INTENSITY; DRIVEN;
D O I
10.1002/lpor.202300078
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ultrashort electron beams with femtosecond to picosecond bunch durations offer unique opportunities to explore active research areas ranging from ultrafast structural dynamics to ultra-high dose-rate radiobiological studies. It presents a straightforward method to generate relativistic electron beams in ambient air via the tight focusing of a few-cycle, mJ-class femtosecond infrared laser. It demonstrates experimentally that electrons can reach up to 1.4 MeV at a dose-rate of 0.15 Gy/s, providing enough dose rate for radiation therapy applications. 3D Particle-In-Cell simulations confirm that the acceleration mechanism is based on the relativistic ponderomotive force and show theoretical agreement with the measured electron energies and divergence. Relativistic peak intensities up to 1019 Wcm-2 are reached in ambient air due to a very low B-integral accumulation during focusing, which prevents intensity clamping. Furthermore, it discusses the scalability of this method with the continuing development of mJ-class high average power lasers, and providing a promising approach for FLASH radiation therapy. The generation of a high dose-rate (0.15 Gy/s), 1 MeV electron beam produced through pondermotive laser acceleration simply by tight focusing a mJ-class, femtosecond, 100 Hz, infrared laser in ambient air is reported. The measured beam characteristics are supported by 3D Particle-In-Cell simulations. The technique is scalable and provides a promising approach for FLASH radiation therapy.image
引用
收藏
页数:9
相关论文
共 38 条
  • [21] Dose error from deviation of dwell time and source position for high dose-rate 192Ir in remote afterloading system
    Okamoto, Hiroyuki
    Aikawa, Ako
    Wakita, Akihisa
    Yoshio, Kotaro
    Murakami, Naoya
    Nakamura, Satoshi
    Hamada, Minoru
    Abe, Yoshihisa
    Itami, Jun
    JOURNAL OF RADIATION RESEARCH, 2014, 55 (04) : 780 - 787
  • [22] Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose
    Meesat, Ridthee
    Belmouaddine, Hakim
    Allard, Jean-Francois
    Tanguay-Renaud, Catherine
    Lemay, Rosalie
    Brastaviceanu, Tiberius
    Tremblay, Luc
    Paquette, Benoit
    Wagner, J. Richard
    Jay-Gerin, Jean-Paul
    Lepage, Martin
    Huels, Michael A.
    Houde, Daniel
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (38) : E2508 - E2513
  • [23] Filamentation length of high-power sharply focused femtosecond laser radiation in air. Effect of light beam size
    Apeksimov D.V.
    Bukin O.A.
    Bykova E.E.
    Geints Y.E.
    Golik S.S.
    Zemlyanov A.A.
    Kabanov A.M.
    Matvienko G.G.
    Atmospheric and Oceanic Optics, 2013, 26 (6) : 539 - 544
  • [24] Technique to Determine Intense Electron Beam Parameters and X-Ray Spectra From Dose-Rate Measurements at Different Angles
    Weber, Bruce, V
    Hinshelwood, David D.
    Swanekamp, Stephen B.
    Rittersdorf, Ian M.
    Renk, Timothy J.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (10) : 3637 - 3649
  • [25] Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator
    Lundh, O.
    Rechatin, C.
    Faure, J.
    Ben-Ismail, A.
    Lim, J.
    De Wagter, C.
    De Neve, W.
    Malka, V.
    MEDICAL PHYSICS, 2012, 39 (06) : 3501 - 3508
  • [26] Comparison BIPM.RI(I)-K8 of high dose-rate 192Ir brachytherapy standards for reference air kerma rate of the PTB and the BIPM
    Kessler, C.
    Behrens, R.
    Kasper, A.
    Grote, F.
    Metrologia, 2024, 61 (1 A)
  • [27] Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NMIJ and the BIPM
    Kessler, C.
    Kurosawa, T.
    Mikamoto, T.
    METROLOGIA, 2016, 53
  • [28] Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the PTB and the BIPM
    Kessler, C.
    Allisy-Roberts, P. J.
    Selbach, H. J.
    METROLOGIA, 2015, 52
  • [29] Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NRC and the BIPM
    Kessler, C.
    Downton, B.
    Mainegra-Hing, E.
    METROLOGIA, 2015, 52
  • [30] Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the VSL and the BIPM
    Alvarez, J. T.
    de Pooter, J. A.
    Andersen, C.
    Aalbers, A. H. L.
    Allisy-Roberts, P. J.
    Kessler, C.
    METROLOGIA, 2014, 51