Homogenization of discrete thin structures

被引:4
|
作者
Braides, Andrea [1 ]
D'Elia, Lorenza [2 ]
机构
[1] SISSA, Via Bonomea 265, Trieste, Italy
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, Vienna, Austria
基金
奥地利科学基金会;
关键词
Thin structures; Dimension reduction; Discrete-to-continuum; Lattice systems; Homogenization; CONTINUUM LIMITS; FILMS; ENERGIES; MODEL;
D O I
10.1016/j.na.2022.112951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider graphs parameterized on a portion X & SUB; Zd x {1,. .. , M}k of a cylindrical subset of the lattice Zd x Zk, and perform a discrete-to-continuum dimension-reduction process for energies defined on X of quadratic type. Our only assumptions are that X be connected as a graph and periodic in the first d-directions. We show that, upon scaling of the domain and of the energies by a small parameter & epsilon;, the scaled energies converge to a d-dimensional limit energy. The main technical points are a dimension-reducing coarse-graining process and a discrete version of the p-connectedness approach by Zhikov.& COPY; 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Homogenization technique of discrete atoms into smeared continuum
    Kwon, Y. W.
    Manthena, C.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2006, 48 (12) : 1352 - 1359
  • [42] HOMOGENIZATION OF DISCRETE HIGH-CONTRAST ENERGIES
    Braides, Andrea
    Piat, Valeria Chiado
    Piatnitski, Andrey
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (04) : 3064 - 3091
  • [43] GROUP-DIFFUSION PARAMETERS BY DISCRETE HOMOGENIZATION
    PIERINI, GC
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1980, 34 (JUN): : 300 - 302
  • [44] Homogenization of discrete diffusion models by asymptotic expansion
    Elias, Jan
    Yin, Hao
    Cusatis, Gianluca
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2022, 46 (16) : 3052 - 3073
  • [45] Homogenization of Periodically Heterogeneous Thin Beams
    Georges Griso
    Bernadette Miara
    Chinese Annals of Mathematics, Series B, 2018, 39 : 397 - 426
  • [46] A note on the homogenization of incommensurate thin films
    Anello, Irene
    Braides, Andrea
    Caragiulo, Fabrizio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15655 - 15666
  • [47] Homogenization of thin piezoelectric perforated shells
    Ghergu, M
    Griso, G
    Mechkour, H
    Miara, B
    COMPTES RENDUS MECANIQUE, 2005, 333 (03): : 249 - 255
  • [48] Homogenization of thin piezoelectric perforated shells
    Ghergu, Marius
    Griso, Georges
    Mechkour, Houari
    Miara, Bernadette
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (05): : 875 - 895
  • [49] Homogenization in a thin domain with an oscillatory boundary
    Arrieta, Jose M.
    Pereira, Marcone C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (01): : 29 - 57
  • [50] Computational homogenization for heterogeneous thin sheets
    Coenen, E. W. C.
    Kouznetsova, V. G.
    Geers, M. G. D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 1180 - 1205