Self-Weighted Graph-Based Framework for Multi-View Clustering

被引:2
|
作者
He, Yanfang [1 ]
Yusof, Umi Kalsom [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Penang, Malaysia
关键词
Clustering algorithms; Clustering methods; Laplace equations; Sparse matrices; Robustness; Linear programming; Knowledge discovery; Graph framework; L1-norm; multi-view clustering; rank constraint; unified graph matrix;
D O I
10.1109/ACCESS.2023.3260971
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple perspectives can be used to explore rich and complex datasets that are widely used in many applications. However, in real-world applications, the multi-view data are often noisy because of various environmental factors. The key challenge of graph-based multi-view clustering is obtaining a consistent clustering structure. Most graph-based methods learn independently in one view how similar the data points in each view are to one another. However, the consistency of information in a multi-view dataset is easily overlooked, causing an unsatisfactory unified graph matrix. To address these problems, this study proposes a novel self-weighted graph-based framework for multi-view clustering (SGMF). This framework integrates these initial similar graph matrices into a unified graph matrix by assigning different weights to the initial graphs of each view. This algorithm's goal is to effectively learn a unified graph matrix and eliminate noise or irrelevant information from the dataset. This is the first time a generalized multi-view framework based on the L1-norm has been proposed. L1-norm can be used to improve the robustness of the algorithm. Particularly, SGMF can automatically weigh each view's initial similar graph matrix to solve the noise problem and obtain a consistent data structure. Simultaneously, a rank constraint is imposed on the graph Laplacian matrix of the final unified matrix, which helps to automatically divide the data points into the appropriate number of clusters. The experimental results on synthetic and real datasets verify the effectiveness and superiority of the proposed method over the latest baseline.
引用
收藏
页码:30197 / 30207
页数:11
相关论文
共 50 条
  • [21] Kernelized Graph-based Multi-view Clustering on High Dimensional Data
    Manna, Supratim
    Khonglah, Jessy Rimaya
    Mukherjee, Anirban
    Saha, Goutam
    2020 TWENTY SIXTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC 2020), 2020,
  • [22] One-step graph-based incomplete multi-view clustering
    Baishun Zhou
    Jintian Ji
    Zhibin Gu
    Zihao Zhou
    Gangyi Ding
    Songhe Feng
    Multimedia Systems, 2024, 30
  • [23] Knowledge Graph Embedding Based on Multi-View Clustering Framework
    Xiao, Han
    Chen, Yidong
    Shi, Xiaodong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (02) : 585 - 596
  • [24] Self-weighted Multiple Kernel Learning for Graph-based Clustering and Semi-supervised Classification
    Kang, Zhao
    Lu, Xiao
    Yi, Jinfeng
    Xu, Zenglin
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2312 - 2318
  • [25] An End-to-End Approach for Graph-Based Multi-View Data Clustering
    Dornaika, Fadi
    El Hajjar, Sally
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (05) : 644 - 654
  • [26] A Unified Framework for Graph-Based Multi-View Partial Multi-Label Learning
    Yuan, Jiazheng
    Liu, Wei
    Gu, Zhibin
    Feng, Songhe
    IEEE ACCESS, 2023, 11 : 49205 - 49215
  • [27] Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering
    Huang, Zongmo
    Ren, Yazhou
    Pu, Xiaorong
    Huang, Shudong
    Xu, Zenglin
    He, Lifang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 7936 - 7943
  • [28] A weighted multi-view clustering via sparse graph learning
    Zhou, Jie
    Zhang, Runxin
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 13517 - 13530
  • [29] Dynamic Weighted Graph Fusion for Deep Multi-View Clustering
    Ren, Yazhou
    Pu, Jingyu
    Cui, Chenhang
    Zheng, Yan
    Chen, Xinyue
    Pu, Xiaorong
    He, Lifang
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 4842 - 4850
  • [30] Bipartite Graph Based Multi-View Clustering
    Li, Lusi
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3111 - 3125