Self-Weighted Graph-Based Framework for Multi-View Clustering

被引:1
|
作者
He, Yanfang [1 ]
Yusof, Umi Kalsom [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Penang, Malaysia
关键词
Clustering algorithms; Clustering methods; Laplace equations; Sparse matrices; Robustness; Linear programming; Knowledge discovery; Graph framework; L1-norm; multi-view clustering; rank constraint; unified graph matrix;
D O I
10.1109/ACCESS.2023.3260971
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple perspectives can be used to explore rich and complex datasets that are widely used in many applications. However, in real-world applications, the multi-view data are often noisy because of various environmental factors. The key challenge of graph-based multi-view clustering is obtaining a consistent clustering structure. Most graph-based methods learn independently in one view how similar the data points in each view are to one another. However, the consistency of information in a multi-view dataset is easily overlooked, causing an unsatisfactory unified graph matrix. To address these problems, this study proposes a novel self-weighted graph-based framework for multi-view clustering (SGMF). This framework integrates these initial similar graph matrices into a unified graph matrix by assigning different weights to the initial graphs of each view. This algorithm's goal is to effectively learn a unified graph matrix and eliminate noise or irrelevant information from the dataset. This is the first time a generalized multi-view framework based on the L1-norm has been proposed. L1-norm can be used to improve the robustness of the algorithm. Particularly, SGMF can automatically weigh each view's initial similar graph matrix to solve the noise problem and obtain a consistent data structure. Simultaneously, a rank constraint is imposed on the graph Laplacian matrix of the final unified matrix, which helps to automatically divide the data points into the appropriate number of clusters. The experimental results on synthetic and real datasets verify the effectiveness and superiority of the proposed method over the latest baseline.
引用
收藏
页码:30197 / 30207
页数:11
相关论文
共 50 条
  • [1] Self-weighted graph learning for multi-view clustering
    Shu, Xiaochuang
    Zhang, Xiangdong
    Wang, Qianqian
    [J]. NEUROCOMPUTING, 2022, 501 : 188 - 196
  • [2] Self-Weighted Anchor Graph Learning for Multi-View Clustering
    Shu, Xiaochuang
    Zhang, Xiangdong
    Gao, Quanxue
    Yang, Ming
    Wang, Rong
    Gao, Xinbo
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5485 - 5499
  • [3] Self-weighted Multi-view Fuzzy Clustering
    Zhu, Xiaofeng
    Zhang, Shichao
    Zhu, Yonghua
    Zheng, Wei
    Yang, Yang
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (04)
  • [4] Robust Self-Weighted Multi-View Projection Clustering
    Wang, Beilei
    Xiao, Yun
    Li, Zhihui
    Wang, Xuanhong
    Chen, Xiaojiang
    Fang, Dingyi
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6110 - 6117
  • [5] Self-Weighted Contrastive Fusion for Deep Multi-View Clustering
    Wu, Song
    Zheng, Yan
    Ren, Yazhou
    He, Jing
    Pu, Xiaorong
    Huang, Shudong
    Hao, Zhifeng
    He, Lifang
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9150 - 9162
  • [6] Towards a unified framework for graph-based multi-view clustering
    Dornaika, F.
    El Hajjar, S.
    [J]. NEURAL NETWORKS, 2024, 173
  • [7] Self-weighted multi-view clustering with soft capped norm
    Huang, Shudong
    Kang, Zhao
    Xu, Zenglin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 158 : 1 - 8
  • [8] Self-Weighted Multi-View Clustering with Deep Matrix Factorization
    Cui, Beilei
    Yu, Hong
    Zhang, Tiantian
    Li, Siwen
    [J]. ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 567 - 582
  • [9] Robust Graph-Based Multi-View Clustering
    Liang, Weixuan
    Liu, Xinwang
    Zhou, Sihang
    Liu, Jiyuan
    Wang, Siwei
    Zhu, En
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7462 - 7469
  • [10] GMC: Graph-Based Multi-View Clustering
    Wang, Hao
    Yang, Yan
    Liu, Bing
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (06) : 1116 - 1129