Invariant measures and global well-posedness for a fractional Schrodinger equation with Moser-Trudinger type nonlinearity

被引:1
|
作者
Casteras, Jean-Baptiste [1 ]
Monsaingeon, Leonard [2 ,3 ]
机构
[1] Univ Lisbon, Fac Ciencias, CMAFcIO, Edificio C6,Piso 1, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, GFM, Edificio C6,Piso 1, P-1749016 Lisbon, Portugal
[3] IECL Univ Lorraine, F-54506 Vandoeuvre Les Nancy, France
关键词
Schrodinger equation; Invariant measure; Global well-posedness; Moser-Trudinger nonlinearity; NLS; SCATTERING; LIMIT;
D O I
10.1007/s40072-023-00287-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct invariant measures and global-in-time solutions for a fractional Schrodinger equation with a Moser-Trudinger type nonlinearity i & part;(t)u = (-delta)(alpha)u + 2 beta ue(beta|u|2) for (x, t) is an element of M x R (E) on a compact Riemannian manifold M without boundary of dimension d >= 2. To do so, we use the so-called Inviscid-Infinite-dimensional limits introduced by Sy ('19) and Sy and Yu ('21). More precisely, we show that if s > d/2 or if s < d/2 and s <= 1 +alpha, there exists an invariant measure mu(s) and a set sigma(s) subset of H-s containing arbitrarily large data such that mu(s)(sigma(s)) = 1 and that (E) is globally well-posed on sigma(s). In the case when s > d/2, we also obtain a logarithmic upper bound on the growth of the H-r-norm of our solutions for r < s. This gives new examples of invariant measures supported in highly regular spaces in comparison with the Gibbs measure constructed by Robert ('21) for the same equation.
引用
收藏
页码:416 / 465
页数:50
相关论文
共 50 条
  • [41] Well-posedness for the nonlocal nonlinear Schrodinger equation
    Peres de Moura, Roger
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1254 - 1267
  • [42] A FRACTIONAL MOSER-TRUDINGER TYPE INEQUALITY IN ONE DIMENSION AND ITS CRITICAL POINTS
    Iula, Stefano
    Maalaoui, Ali
    Martinazzi, Luca
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (5-6) : 455 - 492
  • [43] Local well-posedness for a fractional KdV-type equation
    Roger P. de Moura
    Ailton C. Nascimento
    Gleison N. Santos
    Journal of Evolution Equations, 2022, 22
  • [44] Local well-posedness of semilinear space-time fractional Schrodinger equation
    Su, Xiaoyan
    Zhao, Shiliang
    Li, Miao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 1244 - 1265
  • [45] Local well-posedness for a fractional KdV-type equation
    De Moura, Roger P.
    Nascimento, Ailton C.
    Santos, Gleison N.
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [46] Well-Posedness and Blow-Up for the Fractional Schrodinger-Choquard Equation
    Tao, Lu
    Zhao, Yajuan
    LI, Yongsheng
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (01): : 82 - 101
  • [47] Local well-posedness of a generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity
    Adams, R.
    OPTIK, 2021, 248
  • [48] Remark on well-posedness for the fourth order nonlinear Schrodinger type equation
    Segata, JI
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3559 - 3568
  • [49] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [50] Local and global well-posedness of the fractional order EPDiff equation on Rd
    Bauer, Martin
    Escher, Joachim
    Kolev, Boris
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (06) : 2010 - 2053