Thermal dissipation of the quantum spin Hall edge states in HgTe/CdTe quantum well

被引:1
|
作者
Fang, Jing-Yun [1 ,2 ]
Zhuang, Yu-Chen [1 ,2 ]
Guo, Ai-Min [3 ]
Sun, Qing-Feng [1 ,2 ,4 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Supermicrostruct & Ultrafast Proc, Changsha 410083, Peoples R China
[4] Beijing Acad Quantum Informat Sci, West Bld 3, 10 Xibeiwang East Rd, Beijing 100193, Peoples R China
关键词
quantum spin Hall effect; thermal dissipation; topology; TRANSITION;
D O I
10.1088/1361-648X/acf826
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Quantum spin Hall effect is characterized by topologically protected helical edge states. Here we study the thermal dissipation of helical edge states by considering two types of dissipation sources. The results show that the helical edge states are dissipationless for normal dissipation sources with or without Rashba spin-orbit coupling in the system, but they are dissipative for spin dissipation sources. Further studies on the energy distribution show that electrons with spin-up and spin-down are both in their own equilibrium without dissipation sources. Spin dissipation sources can couple the two subsystems together to induce voltage drop and non-equilibrium distribution, leading to thermal dissipation, while normal dissipation sources cannot. With the increase of thermal dissipation, the subsystems of electrons with spin-up and spin-down evolve from non-equilibrium finally to mutual equilibrium. In addition, the effects of disorder on thermal dissipation are also discussed. Our work provides clues to reduce thermal dissipation in the quantum spin Hall systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Chiral heat transport in driven quantum Hall and quantum spin Hall edge states
    Arrachea, Liliana
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2011, 84 (23)
  • [22] Quantum spin Hall effect in α-Sn/CdTe(001) quantum-well structures
    Kuefner, Sebastian
    Matthes, Lars
    Bechstedt, Friedhelm
    PHYSICAL REVIEW B, 2016, 93 (04)
  • [23] Optimal Thermoelectricity with Quantum Spin Hall Edge States
    Gresta, Daniel
    Real, Mariano
    Arrachea, Liliana
    PHYSICAL REVIEW LETTERS, 2019, 123 (18)
  • [24] Quantum Transport by Spin-Polarized Edge States in Graphene Nanoribbons in the Quantum Spin Hall and Quantum Anomalous Hall Regimes
    Pournaghavi, Nezhat
    Holmqvist, Cecilia
    Pertsova, Anna
    Canali, Carlo M.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2018, 12 (11):
  • [25] Optoelectronic characteristics of CdTe/HgTe/CdTe quantum-dot quantum-well nanoparticles
    Kim, Dong-Won
    Cho, Kyoungah
    Kim, Hyunsuk
    Park, Byoungjun
    Sung, Man Young
    Kim, Sangsig
    SOLID STATE COMMUNICATIONS, 2006, 140 (05) : 215 - 218
  • [26] Imaging currents in HgTe quantum wells in the quantum spin Hall regime
    Nowack, Katja C.
    Spanton, Eric M.
    Baenninger, Matthias
    Koenig, Markus
    Kirtley, John R.
    Kalisky, Beena
    Ames, C.
    Leubner, Philipp
    Bruene, Christoph
    Buhmann, Hartmut
    Molenkamp, Laurens W.
    Goldhaber-Gordon, David
    Moler, Kathryn A.
    NATURE MATERIALS, 2013, 12 (09) : 787 - 791
  • [27] Publisher's Note: Structure of the quantum spin Hall states in HgTe/CdTe and InAs/GaSb/AlSb quantum wells (vol 91, 035310, 2015)
    Klipstein, P. C.
    PHYSICAL REVIEW B, 2015, 91 (03):
  • [28] Spin-polarized edge modes and snake states in HgTe/CdTe quantum wells under an antisymmetric magnetic field
    Zhang, Ying-Tao
    Zhai, Feng
    Qiao, Zhenhua
    Sun, Qing-Feng
    PHYSICAL REVIEW B, 2012, 86 (12)
  • [29] Effects of spin polarization in the HgTe quantum well
    Yakunin, M. V.
    Suslov, A. V.
    Podgornykh, S. M.
    Dvoretsky, S. A.
    Mikhailov, N. N.
    PHYSICAL REVIEW B, 2012, 85 (24)
  • [30] Scattering in quantum wires and junctions of quantum wires with edge states of quantum spin Hall insulators
    Soori, Abhiram
    SOLID STATE COMMUNICATIONS, 2023, 360