Cross-functional Analysis of Generalization in Behavioral Learning

被引:0
|
作者
de Araujo, Pedro Henrique Luz [1 ,2 ]
Roth, Benjamin [1 ,3 ]
机构
[1] Univ Vienna, Fac Comp Sci, Vienna, Austria
[2] UniVie Doctoral Sch Comp Sci, Vienna, Austria
[3] Univ Vienna, Fac Philol & Cultural Studies, Vienna, Austria
关键词
D O I
10.1162/tacl_a_00590
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In behavioral testing, system functionalities underrepresented in the standard evaluation setting (with a held-out test set) are validated through controlled input-output pairs. Optimizing performance on the behavioral tests during training (behavioral learning) would improve coverage of phenomena not sufficiently represented in the i.i.d. data and could lead to seemingly more robust models. However, there is the risk that the model narrowly captures spurious correlations from the behavioral test suite, leading to overestimation and misrepresentation of model performance-one of the original pitfalls of traditional evaluation.In this work, we introduce BeLUGA, an analysis method for evaluating behavioral learning considering generalization across dimensions of different granularity levels. We optimize behavior-specific loss functions and evaluate models on several partitions of the behavioral test suite controlled to leave out specific phenomena. An aggregate score measures generalization to unseen functionalities (or overfitting). We use BeLUGA to examine three representative NLP tasks (sentiment analysis, paraphrase identification, and reading comprehension) and compare the impact of a diverse set of regularization and domain generalization methods on generalization performance.(1)
引用
收藏
页码:1066 / 1081
页数:16
相关论文
共 50 条