MOOSE Stochastic Tools: A module for performing parallel, memory-efficient in situ stochastic simulations

被引:6
|
作者
Slaughter, Andrew E. [1 ]
Prince, Zachary M. [1 ]
German, Peter [1 ]
Halvic, Ian [1 ,2 ]
Jiang, Wen [1 ]
Spencer, Benjamin W. [1 ]
Dhulipala, Somayajulu L. N. [1 ]
Gaston, Derek R. [1 ]
机构
[1] Idaho Natl Lab, Idaho Falls, ID 83415 USA
[2] Texas A&M Univ, College Stn, TX 77840 USA
关键词
Stochastic; Parallel; Multiphysics; MOOSE;
D O I
10.1016/j.softx.2023.101345
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stochastic simulations are ubiquitous across scientific disciplines. The Multiphysics Object-Oriented Simulation Environment (MOOSE) includes an optional module - stochastic tools - for implementing stochastic simulations. It implements an efficient and scalable scheme for performing stochastic analysis in memory. It can be used for building meta models to reduce the computational expense of multiphysics problems as well as perform analyses requiring up to millions of stochastic simulations. To illustrate, we have provided an example that trains a proper orthogonal decomposition reduced -basis model. The impact of the module is detailed by explaining how it is being used for failure analysis in nuclear fuel and reducing the computational burden via dynamic meta model training. The module is unique in that it provides the ability to use a single framework for simulations and stochastic analysis, especially for memory intensive problems and intrusive meta modeling methods.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A memory-efficient parallel routing lookup model with fast updates
    Li, Yanbiao
    Zhang, Dafang
    Huang, Kun
    He, Dacheng
    Long, Weiping
    COMPUTER COMMUNICATIONS, 2014, 38 : 60 - 71
  • [22] BINNING FOR EFFICIENT STOCHASTIC MULTISCALE PARTICLE SIMULATIONS
    Michelotti, M. D.
    Heath, M. T.
    West, M.
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1071 - 1096
  • [23] STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale
    Chen, Weiliang
    Carel, Tristan
    Awile, Omar
    Cantarutti, Nicola
    Castiglioni, Giacomo
    Cattabiani, Alessandro
    Del Marmol, Baudouin
    Hepburn, Iain
    King, James G.
    Kotsalos, Christos
    Kumbhar, Pramod
    Lallouette, Jules
    Melchior, Samuel
    Schuermann, Felix
    De Schutter, Erik
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [24] Memory-efficient Particle Annihilation Algorithm for Wigner Monte Carlo Simulations
    Ellinghaus, P.
    Nedjalkov, M.
    Selberherr, S.
    18TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE 2015), 2015,
  • [25] Memory-Efficient Parallel Simulation of Electron Beam Dynamics Using GPUs
    Arumugam, Kamesh
    Godunov, Alexander
    Ranjan, Desh
    Terzic, Balsa
    Zubair, Mohammad
    PROCEEDINGS OF 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2016, : 212 - 221
  • [26] MERIT: Tensor Transform for Memory-Efficient Vision Processing on Parallel Architectures
    Lin, Yu-Sheng
    Chen, Wei-Chao
    Chien, Shao-Yi
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (03) : 791 - 804
  • [27] Local sequence alignment using parallel memory-efficient dynamic programming
    Pichl, L
    Arai, M
    Hanabusa, K
    Hayashi, T
    Proceedings of the 8th Joint Conference on Information Sciences, Vols 1-3, 2005, : 1269 - 1272
  • [28] Cascaded Parallel Filtering for Memory-Efficient Image-Based Localization
    Cheng, Wentao
    Lin, Weisi
    Chen, Kan
    Zhang, Xinfeng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1032 - 1041
  • [29] Parallel Framework for Memory-Efficient Computation of Image Descriptors for Megapixel Images
    Abdeltif, Amr M.
    Hosny, Khalid M.
    Darwish, Mohamed M.
    Salah, Ahmad
    Li, Kenli
    BIG DATA RESEARCH, 2023, 33
  • [30] A Memory-Efficient Hybrid Parallel Framework for Deep Neural Network Training
    Li, Dongsheng
    Li, Shengwei
    Lai, Zhiquan
    Fu, Yongquan
    Ye, Xiangyu
    Cai, Lei
    Qiao, Linbo
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (04) : 577 - 591