A Transfer Learning Method Using High-Quality Pseudo Labels for Bearing Fault Diagnosis

被引:0
|
作者
Zhu, Wenying [1 ]
Shi, Boqiang [1 ]
Feng, Zhipeng [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Transfer learning; Training; Task analysis; Probability distribution; Kernel; Fault diagnosis; Artificial neural networks; Bearing; fault diagnosis; probability distribution discrepancy; pseudo-label learning; transfer learning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many supervised neural network frameworks work well only when the training data and the test data are independent and identically distributed for bearing fault diagnosis. In real industrial applications, the monitoring data follow different distributions owing to the changes of working conditions and data acquisition ways. These frameworks also require numerous labeled data for training, but labeling data are laborious, even labels often do not exist in many complex engineered systems. To address these problems, we proposed a novel transfer learning method that transfers knowledge across different distributed but related domains. The proposed method exploits the capabilities of multiple kernel variant of maximum mean discrepancy (MK-MMD) in measuring the marginal probability distribution discrepancy and pseudo label in calculating conditional probability distribution discrepancy. Considering the interference of pseudo-label noise, we develop an approach to filter out pseudo labels of low quality by an adaptive threshold and a making-decision-twice strategy. The performance of the proposed method is demonstrated with two bearing datasets. The comparison with the fixed threshold shows that the improved pseudo-label learning (IPLL) can resist data imbalance and raise prediction accuracy. The proposed method is validated by predicting the bearing health states of vibration signals under various working conditions and different acquisition ways. The comparative analysis results demonstrate its advantages over other transfer learning methods in terms of prediction accuracy, robustness, and convergence speed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning
    Zhang X.
    Pan G.
    Guo H.
    Mao Q.
    Fan H.
    Wan X.
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2022, 50 (04): : 256 - 263
  • [22] A Bearing Fault Diagnosis Method Based on Improved Convolution Neural Network and Transfer Learning
    Jiang, Fan
    Shen, Xi
    Jiang, Feng
    Zhao, ZiShan
    Cheng, ShuMan
    INTERNATIONAL CONFERENCE ON INTELLIGENT EQUIPMENT AND SPECIAL ROBOTS (ICIESR 2021), 2021, 12127
  • [23] Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning
    Yin, Zhenyu
    Zhang, Feiqing
    Xu, Guangyuan
    Han, Guangjie
    Bi, Yuanguo
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [24] Fault Diagnosis Method of Roadheader Bearing Based on VMD and Domain Adaptive Transfer Learning
    Qu, Xiaofei
    Zhang, Yongkang
    SENSORS, 2023, 23 (11)
  • [25] A novel transfer learning method for bearing fault diagnosis under different working conditions
    Zou, Yisheng
    Liu, Yongzhi
    Deng, Jialin
    Jiang, Yuliang
    Zhang, Weihua
    MEASUREMENT, 2021, 171
  • [26] A reinforcement transfer learning method based on a policy gradient for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Wu, Zhenghong
    Xu, Jun
    Zhang, Jianjun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)
  • [27] An unsupervised transfer learning bearing fault diagnosis method based on depthwise separable convolution
    Li, Xueyi
    Yuan, Peng
    Wang, Xiangkai
    Li, Daiyou
    Xie, Zhijie
    Kong, Xiangwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (09)
  • [28] Transfer learning for bearing fault diagnosis: adaptive batch normalization and combined optimization method
    Li, Xueyi
    Su, Kaiyu
    Li, Daiyou
    He, Qiushi
    Xie, Zhijie
    Kong, Xiangwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [29] Research on Rolling Bearing Fault Diagnosis Method Based on Generative Adversarial and Transfer Learning
    Pei, Xin
    Su, Shaohui
    Jiang, Linbei
    Chu, Changyong
    Gong, Lei
    Yuan, Yiming
    PROCESSES, 2022, 10 (08)
  • [30] Fault diagnosis method of rolling bearing of mine main fan based on transfer learning
    Cui, Wei
    Meng, Guoying
    Wan, Xingwei
    Meitan Kexue Jishu/Coal Science and Technology (Peking), 2024, 52 : 280 - 287