Effective SEI Formation via Phosphazene-Based Electrolyte Additives for Stabilizing Silicon-Based Lithium-Ion Batteries

被引:48
|
作者
Ghaur, Adjmal [1 ]
Peschel, Christoph [1 ]
Dienwiebel, Iris [1 ]
Haneke, Lukas [1 ]
Du, Leilei [1 ]
Profanter, Laurin [1 ]
Gomez-Martin, Aurora [1 ]
Winter, Martin [1 ,2 ]
Nowak, Sascha [1 ]
Placke, Tobias [1 ]
机构
[1] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Corrensstr 46, D-48149 Munster, Germany
关键词
electrolyte additives; lithium-ion batteries; phosphazene compounds; silicon anodes; solid electrolyte interphase; FLUOROETHYLENE CARBONATE FEC; SOLID-ELECTROLYTE; VINYLENE CARBONATE; NEGATIVE ELECTRODE; ETHYLENE CARBONATE; SURFACE-CHEMISTRY; SELF-DISCHARGE; PERFORMANCE; INTERPHASE; ANODES;
D O I
10.1002/aenm.202203503
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon, as potential next-generation anode material for high-energy lithium-ion batteries (LIBs), suffers from substantial volume changes during (dis)charging, resulting in continuous breakage and (re-)formation of the solid electrolyte interphase (SEI), as well as from consumption of electrolyte and active lithium, which negatively impacts long-term performance and prevents silicon-rich anodes from practical application. In this work, fluorinated phosphazene compounds are investigated as electrolyte additives concerning their SEI-forming ability for boosting the performance of silicon oxide (SiOx)-based LIB cells. In detail, the electrochemical performance of NCM523 || SiOx/C pouch cells is studied, in combination with analyses regarding gas evolution properties, post-mortem morphological changes of the anode electrode and the SEI, as well as possible electrolyte degradation. Introducing the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between fluoroethylene carbonate and hexafluorocyclotriphosphazene-derivatives (HFPN), as well as enhanced electrochemical performance. The formation of a more effective SEI and increased electrolyte stabilization improves lifetime and results in an overall lower cell impedance. Furthermore, gas chromatography-mass spectrometry measurements of the aged electrolyte with HFPN-derivatives as an additive compound show suppressed ethylene carbonate and ethyl methyl carbonate decomposition, as well as reduced trans-esterification and oligomerization products in the aged electrolyte.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Recent Progress in Advanced Characterization Methods for Silicon-Based Lithium-Ion Batteries
    Wu, Jingkun
    Ma, Fei
    Liu, Xiaorui
    Fan, Xiayue
    Shen, Long
    Wu, Zhihong
    Ding, Xiaoyang
    Han, Xiaopeng
    Deng, Yida
    Hu, Wenbin
    Zhong, Cheng
    SMALL METHODS, 2019, 3 (10)
  • [42] Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries
    Zhang, Jingshuo
    Zhai, Yue
    Zhao, Ziyun
    He, Jiaxing
    Wei, Wei
    Xiao, Jing
    Wu, Shichao
    Yang, Quan-Hong
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (06)
  • [43] Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries
    Munao, David
    Valvo, Mario
    van Erven, Jan
    Kelder, Erik M.
    Hassoun, Jusef
    Panero, Stefania
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) : 1556 - 1561
  • [44] Training-improved electrochemical performances of silicon-based lithium-ion batteries
    Zhang, Kai
    Zhou, Junwu
    Zheng, Bailin
    Li, Yong
    Yang, Fuqian
    JOURNAL OF POWER SOURCES, 2025, 629
  • [45] Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications
    Feng, Kun
    Li, Matthew
    Liu, Wenwen
    Kashkooli, Ali Ghorbani
    Xiao, Xingcheng
    Cai, Mei
    Chen, Zhongwei
    SMALL, 2018, 14 (08)
  • [46] Recent progress and challenges in silicon-based anode materials for lithium-ion batteries
    Toki, Gazi Farhan Ishraque
    Hossain, M. Khalid
    Rehman, Waheed Ur
    Manj, Rana Zafar Abbas
    Wang, Li
    Yang, Jianping
    INDUSTRIAL CHEMISTRY & MATERIALS, 2024, 2 (02): : 226 - 269
  • [47] Design and modification progress of binders for silicon-based anodes of lithium-ion batteries
    Zhao T.
    Shen J.
    Xu K.
    Ji R.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2021, 38 (06): : 1678 - 1690
  • [48] Recent Research Progress of Silicon-Based Anode Materials for Lithium-Ion Batteries
    Du, Aimin
    Li, Hang
    Chen, Xinwen
    Han, Yeyang
    Zhu, Zhongpan
    Chu, Chuanchuan
    CHEMISTRYSELECT, 2022, 7 (19):
  • [49] Carbon Nanofiber Cages and Interface Engineering Stabilizing Silicon-Based Anode for High-Performance Lithium-Ion Batteries
    Yan, Xiang
    Hu, Liuyi
    Xia, Yang
    Zhang, Jun
    Zhang, Wenkui
    Gan, Yongping
    He, Xinping
    Xia, Xinhui
    Huang, Hui
    ACS APPLIED ENERGY MATERIALS, 2023, 7 (02) : 403 - 413
  • [50] Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries
    Xu, Hanying
    Han, Ce
    Li, Wenting
    Li, Huiyu
    Qiu, Xinping
    JOURNAL OF POWER SOURCES, 2022, 529