A descent subgradient method using Mifflin's line search for nonsmooth nonconvex optimization

被引:1
|
作者
Maleknia, Morteza [1 ,2 ]
Soleimani-Damaneh, Majid [1 ]
机构
[1] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, ICOL Ind & Computat Optimizat Lab, Tehran, Iran
[2] Isfahan Univ Technol, Dept Math Sci, Esfahan, Iran
基金
美国国家科学基金会;
关键词
Nonlinear optimization; nonsmooth optimization; nonconvex programming; subgradient; GRADIENT SAMPLING ALGORITHM; VARIABLE-METRIC METHOD; BUNDLE METHODS; CONVERGENCE;
D O I
10.1080/02331934.2024.2322152
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a descent subgradient algorithm for minimizing a function $ f:\mathbb {R}<^>n\to \mathbb {R} $ f:Rn -> R, assumed to be locally Lipschitz, but not necessarily smooth or convex. To find an effective descent direction, the Goldstein epsilon-subdifferential is approximated through an iterative process. The method enjoys a new two-point variant of Mifflin's line search in which the subgradients are arbitrary. Thus, the line search procedure is easy to implement. Moreover, in comparison to bundle methods, the quadratic subproblems have a simple structure, and to handle nonconvexity the proposed method requires no algorithmic modification. We study the global convergence of the method and prove that any accumulation point of the generated sequence is Clarke stationary, assuming that the objective f is weakly upper semismooth. We illustrate the efficiency and effectiveness of the proposed algorithm on a collection of academic and semi-academic test problems.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Aggregate subgradient method for nonsmooth DC optimization
    Bagirov, Adil M.
    Taheri, Sona
    Joki, Kaisa
    Karmitsa, Napsu
    Makela, Marko M.
    [J]. OPTIMIZATION LETTERS, 2021, 15 (01) : 83 - 96
  • [22] A NOVEL LINE SEARCH METHOD FOR NONSMOOTH OPTIMIZATION PROBLEMS
    Yang, Yang
    Pesavento, Marius
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1726 - 1730
  • [23] Bundle Method for Nonconvex Nonsmooth Constrained Optimization
    Minh Ngoc Dao
    [J]. JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1061 - 1090
  • [24] An Effective Line Search for the Subgradient Method
    C. Beltran
    F. J. Heredia
    [J]. Journal of Optimization Theory and Applications, 2005, 125 : 1 - 18
  • [25] An effective line search for the subgradient method
    Beltran, C
    Heredia, F
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (01) : 1 - 18
  • [26] S-SUBGRADIENT PROJECTION ALGORITHMS WITH ARMIJO LINE SEARCH FOR NONCONVEX SPLIT FEASIBILITY PROBLEMS
    Chen, Jinzuo
    Postolache, Mihai
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (10) : 2167 - 2177
  • [27] A subgradient-based neurodynamic algorithm to constrained nonsmooth nonconvex interval-valued optimization
    Liu, Jingxin
    Liao, Xiaofeng
    Dong, Jin-song
    Mansoori, Amin
    [J]. NEURAL NETWORKS, 2023, 160 : 259 - 273
  • [28] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Ya. I. Alber
    A. N. Iusem
    M. V. Solodov
    [J]. Mathematical Programming, 1998, 81 : 23 - 35
  • [29] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, Ya.I.
    Iusem, A.N.
    Solodov, M.V.
    [J]. Mathematical Programming, Series A, 1998, 81 (01): : 23 - 35
  • [30] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, YI
    Iusem, AN
    Solodov, MV
    [J]. MATHEMATICAL PROGRAMMING, 1998, 81 (01) : 23 - 35