Hydrocarbon-Based Composite Membrane Using LCP-Nonwoven Fabrics for Durable Proton Exchange Membrane Water Electrolysis

被引:5
|
作者
Kang, Seok Hyeon [1 ]
Jeong, Hwan Yeop [1 ]
Yoon, Sang Jun [1 ]
So, Soonyong [1 ]
Choi, Jaewon [2 ]
Kim, Tae-Ho [1 ]
Yu, Duk Man [1 ]
机构
[1] Korea Res Inst Chem Technol KRICT, Energy Mat Res Ctr, Daejeon 34114, South Korea
[2] Kyungpook Natl Univ, Dept Polymer Sci & Engn, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
water electrolysis; proton exchange membrane; composite membrane; hydrocarbon-based ionomer; LCP-nonwoven fabric; ETHER SULFONE) MEMBRANES; COPOLYMERS; PERFORMANCE; IMPROVEMENT; MORPHOLOGY; HYDROGEN;
D O I
10.3390/polym15092109
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A new hydrocarbon-based (HC) composite membrane was developed using liquid crystal polymer (LCP)-nonwoven fabrics for application in proton exchange membrane water electrolysis (PEMWE). A copolymer of sulfonated poly(arylene ether sulfone) with a sulfonation degree of 50 mol% (SPAES50) was utilized as an ionomer for the HC membranes and impregnated into the LCP-nonwoven fabrics without any surface treatment of the LCP. The physical interlocking structure between the SPAES50 and LCP-nonwoven fabrics was investigated, validating the outstanding mechanical properties and dimensional stability of the composite membrane in comparison to the pristine membrane. In addition, the through-plane proton conductivity of the composite membrane at 80 degrees C was only 15% lower than that of the pristine membrane because of the defect-free impregnation state, minimizing the decrease in the proton conductivity caused by the non-proton conductive LCP. During the electrochemical evaluation, the superior cell performance of the composite membrane was evident, with a current density of 5.41 A/cm(2) at 1.9 V, compared to 4.65 A/cm(2) for the pristine membrane, which can be attributed to the smaller membrane resistance of the composite membrane. From the results of the degradation rates, the prepared composite membrane also showed enhanced cell efficiency and durability during the PEMWE operations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Safety analysis of proton exchange membrane water electrolysis system
    Liu, Yuanxing
    Amin, Md. Tanjin
    Khan, Faisal
    Pistikopoulos, Efstratios N.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [22] Progress on the anode catalysts for proton exchange membrane water electrolysis
    Zhang, Jiahao
    Yue, Qin
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (24): : 2889 - 2905
  • [23] Development status and prospects of proton exchange membrane water electrolysis
    He Z.
    Shi C.
    Chen Z.
    Pan L.
    Huang Z.
    Zhang X.
    Zou J.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (09): : 4762 - 4773
  • [24] Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
    Lee, Sanghyeok
    Sul, Taejun
    Kim, Unsoo
    Kim, Sohee
    Chae, Ji Eon
    Kim, Junsoo
    Kim, Sang Moon
    Jang, Segeun
    ADVANCED MATERIALS TECHNOLOGIES, 2025, 10 (03):
  • [25] Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis
    Jeong, Jae-Hyeun
    Shin, Eun-Kyung
    Jeong, Jae-Jin
    Na, Il-Chai
    Chu, Cheun-Ho
    Park, Kwon-Pil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2014, 52 (06): : 695 - 700
  • [26] A Comparative Study of Conditioning Methods for Hydrocarbon-Based Proton-Exchange Membrane Fuel Cells for Improved Performance
    Nguyen, Hien
    Stiegeler, Julian
    Liepold, Hannes
    Schwarz, Claudia
    Vierrath, Severin
    Breitwieser, Matthias
    ENERGY TECHNOLOGY, 2023, 11 (08)
  • [27] Performance improvement induced by membrane treatment in proton exchange membrane water electrolysis cells
    Kang, Zhenye
    Wang, Min
    Yang, Yingjie
    Wang, Hao
    Liu, Yanrong
    Mo, Jingke
    Li, Jing
    Deng, Peilin
    Jia, Chunman
    Tian, Xinlong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 5807 - 5816
  • [28] Innovative Membrane Electrode Assembly (MEA) Fabrication for Proton Exchange Membrane Water Electrolysis
    Jung, Guo-Bin
    Chan, Shih-Hung
    Lai, Chun-Ju
    Yeh, Chia-Chen
    Yu, Jyun-Wei
    ENERGIES, 2019, 12 (21)
  • [29] Proton exchange membrane water electrolysis system-membrane electrode assembly with additive
    Yu, Jyun-Wei
    Jung, Guo-bin
    Su, Yi-Ju
    Yeh, Chia-Chen
    Kan, Min-Yu
    Lee, Che-Yu
    Lai, Chun-Ju
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (30) : 15721 - 15726
  • [30] Enhancing proton exchange membrane water electrolysis by building electron/proton pathways
    Zhu, Liyan
    Zhang, Hao
    Zhang, Aojie
    Tian, Tian
    Shen, Yuhan
    Wu, Mingjuan
    Li, Neng
    Tang, Haolin
    ADVANCED POWDER MATERIALS, 2024, 3 (04):