Quantum systems in silicon carbide for sensing applications

被引:13
|
作者
Castelletto, S. [1 ]
Lew, C. T-K [2 ]
Lin, Wu-Xi [3 ,4 ,5 ]
Xu, Jin-Shi [3 ,4 ,5 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
[2] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[3] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei, Anhui, Peoples R China
[5] Univ Sci & Technol China, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
silicon carbide; paramagnetic spin defects; quantum sensing; colour centres; SINGLE COLOR-CENTERS; COHERENT CONTROL; DIVACANCY SPINS; VACANCY CENTERS; OPTICAL CONTROL; DEFECTS; QUBITS; SEMICONDUCTOR; 4H;
D O I
10.1088/1361-6633/ad10b3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper summarizes recent studies identifying key qubit systems in silicon carbide (SiC) for quantum sensing of magnetic, electric fields, and temperature at the nano and microscale. The properties of colour centres in SiC, that can be used for quantum sensing, are reviewed with a focus on paramagnetic colour centres and their spin Hamiltonians describing Zeeman splitting, Stark effect, and hyperfine interactions. These properties are then mapped onto various methods for their initialization, control, and read-out. We then summarised methods used for a spin and charge state control in various colour centres in SiC. These properties and methods are then described in the context of quantum sensing applications in magnetometry, thermometry, and electrometry. Current state-of-the art sensitivities are compiled and approaches to enhance the sensitivity are proposed. The large variety of methods for control and read-out, combined with the ability to scale this material in integrated photonics chips operating in harsh environments, places SiC at the forefront of future quantum sensing technology based on semiconductors.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Developing silicon carbide for quantum spintronics
    Son, Nguyen T.
    Anderson, Christopher P.
    Bourassa, Alexandre
    Miao, Kevin C.
    Babin, Charles
    Widmann, Matthias
    Niethammer, Matthias
    Ul Hassan, Jawad
    Morioka, Naoya
    Ivanov, Ivan G.
    Kaiser, Florian
    Wrachtrup, Joerg
    Awschalom, David D.
    APPLIED PHYSICS LETTERS, 2020, 116 (19)
  • [22] Electrical properties of silicon carbide/silicon rich carbide multilayers for photovoltaic applications
    Perani, M.
    Cavalcoli, D.
    Canino, M.
    Allegrezza, M.
    Bellettato, M.
    Summonte, C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 135 : 29 - 34
  • [23] Silicon carbide incorporates quantum gates
    Castelletto, S.
    NATURE MATERIALS, 2022, 21 (01) : 8 - 9
  • [24] Silicon carbide quantum dots for bioimaging
    Beke, David
    Szekrenyes, Zsolt
    Palfi, Denes
    Rona, Gergely
    Balogh, Istvan
    Maak, Pal Andor
    Katona, Gergely
    Czigany, Zsolt
    Kamaras, Katalin
    Rozsa, Balazs
    Buday, Laszlo
    Vertessy, Beata
    Gali, Adam
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (02) : 205 - 209
  • [25] Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide
    Nagy, Roland
    Widmann, Matthias
    Niethammer, Matthias
    Dasari, Durga B. R.
    Gerhardt, Ilja
    Soykal, Oney O.
    Radulaski, Marina
    Ohshima, Takeshi
    Vuckovic, Jelena
    Nguyen Tien Son
    Ivanov, Ivan G.
    Economou, Sophia E.
    Bonato, Cristian
    Lee, Sang-Yun
    Wrachtrup, Joerg
    PHYSICAL REVIEW APPLIED, 2018, 9 (03):
  • [26] Silicon carbide's quantum aspects
    Alberto Boretti
    Nature Photonics, 2014, 8 : 88 - 90
  • [27] Silicon carbide for microelectromechanical systems
    Mehregany, M
    Zorman, CA
    Roy, S
    Fleischman, AJ
    Wu, CH
    Rajan, N
    INTERNATIONAL MATERIALS REVIEWS, 2000, 45 (03) : 85 - 108
  • [28] Optimization of etching processes for the fabrication of smooth silicon carbide membranes for applications in quantum technology
    Mokhtarzadeh, Mahsa
    Carulla, Maria
    Kozak, Roksolana
    David, Christian
    MICRO AND NANO ENGINEERING, 2022, 16
  • [29] Silicon carbide devices for power applications
    Clarke, RC
    PROCEEDINGS OF THE 2001 BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING, 2001, : 124 - 124
  • [30] Silicon carbide for microwave power applications
    Thomson CSF LCR, Domaine de Corbeville, 91404 Orsay, Cedex, France
    Diamond Relat. Mat., 10 (1405-1413):