Towards data-driven predictive control of active upper-body exoskeletons for load carrying

被引:0
|
作者
Souza, Alexandre Oliveira [1 ,2 ]
Grenier, Jordane [2 ]
Charpillet, Francois [1 ]
Maurice, Pauline [1 ]
Ivaldi, Serena [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
[2] Safran Elect & Def, Valence, France
关键词
Exoskeleton; Predictive control; LSTM;
D O I
10.1109/ARSO56563.2023.10187548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Upper-limb active exoskeletons are a promising technology to reduce musculoskeletal disorders in the context of load-carrying activities. To assist the user on time, it is crucial to predict the assistance torque required for the future intended movement. In this paper, we propose to predict such a torque with predictive models trained on simulated data. We generate exoskeleton sensor data for training learning-based prediction models from human motion capture data. We design a Quadratic Programming control problem for the exoskeleton to track the human body across its movements. From the data generated using this simulation method, we train two torque command prediction methods for transparent control and load carrying. We show that exoskeleton torque command can be predicted with a relative error below 5% at a horizon of 100ms.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [1] Towards data-driven stochastic predictive control
    Pan, Guanru
    Ou, Ruchuan
    Faulwasser, Timm
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023,
  • [2] Towards data-driven stochastic predictive control
    Institute of Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund, Dortmund, Germany
    [J]. Int J Robust Nonlinear Control,
  • [3] Towards Data-Driven Predictive Control Using Wavelets
    Sathyanarayanan, Kiran Kumar
    Pan, Guanru
    Faulwasser, Timm
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 632 - 637
  • [4] Payload estimation using forcemyography sensors for control of upper-body exoskeleton in load carrying assistance
    Islam, Muhammad R. U.
    Bai, Shaoping
    [J]. MODELING IDENTIFICATION AND CONTROL, 2019, 40 (04) : 189 - 198
  • [5] Data-driven predictive direct load control of refrigeration systems
    Shafiei, Seyed Ehsan
    Knudsen, Torben
    Wisniewski, Rafael
    Andersen, Palle
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (07): : 1022 - 1033
  • [6] Active queue management algorithm based on data-driven predictive control
    Ping Wang
    Daji Zhu
    Xiaohui Lu
    [J]. Telecommunication Systems, 2017, 64 : 103 - 111
  • [7] Active queue management algorithm based on data-driven predictive control
    Wang Ping
    Liang Yu
    Lu Xiaohui
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 6788 - 6793
  • [8] Active queue management algorithm based on data-driven predictive control
    Wang, Ping
    Zhu, Daji
    Lu, Xiaohui
    [J]. TELECOMMUNICATION SYSTEMS, 2017, 64 (01) : 103 - 111
  • [9] Data-Driven Control of LVDC Network Converters: Active Load Stabilization
    Ruiz-Martinez, Omar F.
    Mayo-Maldonado, Jonathan C.
    Escobar, Gerardo
    Frias-Araya, Benjamin A.
    Valdez-Resendiz, Jesus E.
    Rosas-Caro, Julio C.
    Rapisarda, Paolo
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (03) : 2182 - 2194
  • [10] Towards Private Data-driven Control
    Alexandru, Andreea B.
    Tsiamis, Anastasios
    Pappas, George J.
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 5449 - 5456