Performance of artificial intelligence for the detection of pathological myopia from colour fundus images: a systematic review and meta-analysis

被引:4
|
作者
Prashar, Jai [1 ,2 ]
Tay, Nicole [1 ]
机构
[1] UCL, London, England
[2] Moorfields Eye Hosp NHS Fdn Trust, London, England
关键词
RETINAL DISEASE; EYE DISEASES; SINGAPORE; METHODOLOGY; BLINDNESS; THERAPY; LIFE;
D O I
10.1038/s41433-023-02680-z
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
BackgroundPathological myopia (PM) is a major cause of worldwide blindness and represents a serious threat to eye health globally. Artificial intelligence (AI)-based methods are gaining traction in ophthalmology as highly sensitive and specific tools for screening and diagnosis of many eye diseases. However, there is currently a lack of high-quality evidence for their use in the diagnosis of PM.MethodsA systematic review and meta-analysis of studies evaluating the diagnostic performance of AI-based tools in PM was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance. Five electronic databases were searched, results were assessed against the inclusion criteria and a quality assessment was conducted for included studies. Model sensitivity and specificity were pooled using the DerSimonian and Laird (random-effects) model. Subgroup analysis and meta-regression were performed.ResultsOf 1021 citations identified, 17 studies were included in the systematic review and 11 studies, evaluating 165,787 eyes, were included in the meta-analysis. The area under the summary receiver operator curve (SROC) was 0.9905. The pooled sensitivity was 95.9% [95.5%-96.2%], and the overall pooled specificity was 96.5% [96.3%-96.6%]. The pooled diagnostic odds ratio (DOR) for detection of PM was 841.26 [418.37-1691.61].ConclusionsThis systematic review and meta-analysis provides robust early evidence that AI-based, particularly deep-learning based, diagnostic tools are a highly specific and sensitive modality for the detection of PM. There is potential for such tools to be incorporated into ophthalmic public health screening programmes, particularly in resource-poor areas with a substantial prevalence of high myopia.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 50 条
  • [31] Artificial Intelligence-Assisted Colonoscopy for Polyp Detection A Systematic Review and Meta-analysis
    Soleymanjahi, Saeed
    Huebner, Jack
    Elmansy, Lina
    Rajashekar, Niroop
    Luedtke, Nando
    Paracha, Rumzah
    Thompson, Rachel
    Grimshaw, Alyssa A.
    Foroutan, Farid
    Sultan, Shahnaz
    Shung, Dennis L.
    ANNALS OF INTERNAL MEDICINE, 2024, 177 (12) : 1652 - +
  • [32] Utility of Artificial Intelligence in the Cystoscopic Detection of Bladder Cancer: A Systematic Review and Meta-Analysis
    Ganesananthan, S.
    Ganesananthan, S.
    Simpson, B. S.
    Norris, J. M.
    BRITISH JOURNAL OF SURGERY, 2021, 108
  • [33] Artificial Intelligence for Hip Fracture Detection and Outcome Prediction: A Systematic Review and Meta-analysis
    Lex, Johnathan R.
    Di Michele, Joseph
    Koucheki, Robert
    Pincus, Daniel
    Whyne, Cari
    Ravi, Bheeshma
    JAMA NETWORK OPEN, 2023, 6 (03) : E233391
  • [34] Artificial Intelligence in Early Childhood Caries Detection and Prediction: A Systematic Review and Meta-Analysis
    Rokhshad, Rata
    Banakar, Morteza
    Shobeiri, Parnian
    Zhang, Ping
    PEDIATRIC DENTISTRY, 2024, 46 (06) : 385 - 394
  • [35] Diagnostic performance of artificial intelligence-aided caries detection on bitewing radiographs: a systematic review and meta-analysis
    Ammar, Nour
    Kuehnisch, Jan
    JAPANESE DENTAL SCIENCE REVIEW, 2024, 60 : 128 - 136
  • [36] Application of artificial intelligence in diagnosis of osteoporosis using medical images: a systematic review and meta-analysis
    L. Gao
    T. Jiao
    Q. Feng
    W. Wang
    Osteoporosis International, 2021, 32 : 1279 - 1286
  • [37] Application of artificial intelligence in diagnosis of osteoporosis using medical images: a systematic review and meta-analysis
    Gao, L.
    Jiao, T.
    Feng, Q.
    Wang, W.
    OSTEOPOROSIS INTERNATIONAL, 2021, 32 (07) : 1279 - 1286
  • [38] Artificial Intelligence in Laryngeal Endoscopy: Systematic Review and Meta-Analysis
    Zurek, Michal
    Jasak, Kamil
    Niemczyk, Kazimierz
    Rzepakowska, Anna
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (10)
  • [39] Systematic review and meta-analysis of performance of wearable artificial intelligence in detecting and predicting depression
    Alaa Abd-Alrazaq
    Rawan AlSaad
    Farag Shuweihdi
    Arfan Ahmed
    Sarah Aziz
    Javaid Sheikh
    npj Digital Medicine, 6
  • [40] Performance of artificial intelligence on cervical vertebral maturation assessment: a systematic review and meta-analysis
    Sadeghi, Termeh Sarrafan
    Ourang, Seyed AmirHossein
    Sohrabniya, Fatemeh
    Sadr, Soroush
    Shobeiri, Parnian
    Motamedian, Saeed Reza
    BMC ORAL HEALTH, 2025, 25 (01):