Reconstruction of modified transmission eigenvalues using Cauchy data

被引:1
|
作者
Liu, Juan [2 ]
Liu, Yanfang [3 ]
Sun, Jiguang [1 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[2] Jinan Univ, Dept Math, Guangzhou, Peoples R China
[3] George Washington Univ, Dept Math, Washington, DC USA
来源
关键词
Inverse scattering; modified transmission eigenvalues; reciprocity gap; Cauchy data; inhomogeneous media;
D O I
10.1515/jiip-2022-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modified transmission eigenvalue (MTE) problem was introduced in [S. Cogar, D. Colton, S. Meng and P. Monk, Modified transmission eigenvalues in inverse scattering theory, Inverse Problems 33 (2017), no. 12, Article ID 125002] and used as a target signature for nondestructive testing. In this paper, we study the inverse spectral problem to reconstruct the modified transmission eigenvalues using Cauchy data. We propose a reciprocity gap functional method and show that the MTEs can be determined by solving some linear ill-posed integral equations. Numerical examples for both absorbing and non-absorbing media are presented to validate the effectiveness and robustness of the proposed method.
引用
收藏
页码:905 / 919
页数:15
相关论文
共 50 条
  • [41] Numerical reconstruction of unknown boundary data in the Cauchy problem for Laplace's equation
    Mukanova, Balgaisha
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (08) : 1255 - 1267
  • [42] DETERMINING TRANSMISSION EIGENVALUES OF ANISOTROPIC INHOMOGENEOUS MEDIA FROM FAR FIELD DATA
    Lechleiter, Armin
    Peters, Stefan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (07) : 1803 - 1827
  • [43] On the use of transmission eigenvalues to estimate the index of refraction from far field data
    Cakoni, Fioralba
    Colton, David
    Monk, Peter
    INVERSE PROBLEMS, 2007, 23 (02) : 507 - 522
  • [44] Interior transmission eigenvalues of a rectangle
    Sleeman, B. D.
    Stocks, D. C.
    INVERSE PROBLEMS, 2016, 32 (02)
  • [45] Transmission eigenvalues in one dimension
    Sylvester, John
    INVERSE PROBLEMS, 2013, 29 (10)
  • [46] An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy–Stefan problem
    G. M. M. Reddy
    P. Nanda
    M. Vynnycky
    J. A. Cuminato
    Computational and Applied Mathematics, 2021, 40
  • [47] TRANSMISSION EIGENVALUES FOR MULTIPOINT SCATTERERS
    Grinevich, P. G.
    Novikov, R. G.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (04): : 17 - 25
  • [48] A perturbation problem for transmission eigenvalues
    Ambrose, David M.
    Cakoni, Fioralba
    Moskow, Shari
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (01)
  • [49] TRANSMISSION EIGENVALUES FOR ELLIPTIC OPERATORS
    Hitrik, Michael
    Krupchyk, Katsiaryna
    Ola, Petri
    Paivarinta, Lassi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2630 - 2639
  • [50] NEW RESULTS ON TRANSMISSION EIGENVALUES
    Cakoni, Fioralba
    Gintides, Drossos
    INVERSE PROBLEMS AND IMAGING, 2010, 4 (01) : 39 - 48