Utilizing Machine Learning to Greatly Expand the Range and Accuracy of Bottom-Up Coarse-Grained Models through Virtual Particles

被引:16
|
作者
Sahrmann, Patrick G. [1 ,2 ,3 ,4 ]
Loose, Timothy D. [1 ,2 ,3 ,4 ]
Durumeric, Aleksander E. P. [1 ,2 ,3 ,4 ]
Voth, Gregory A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, Chicago Ctr Theoret Chem, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; GUI MEMBRANE-BUILDER; SOLVENT-FREE; FORCE-FIELD; LIPID-BILAYERS; PHASE; EQUILIBRIUM; POTENTIALS; TEMPERATURE; PERSPECTIVE;
D O I
10.1021/acs.jctc.2c01183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coarse-grained (CG) models parametrized using atomistic reference data, i.e., "bottom up" CG models, have proven useful in the study of biomolecules and other soft matter. However, the construction of highly accurate, low resolution CG models of biomolecules remains challenging. We demonstrate in this work how virtual particles, CG sites with no atomistic correspondence, can be incorporated into CG models within the context of relative entropy minimization (REM) as latent variables. The methodology presented, variational derivative relative entropy minimization (VD REM), enables optimization of virtual particle interactions through a gradient descent algorithm aided by machine learning. We apply this methodology to the challenging case of a solvent-free CG model of a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer and demonstrate that introduction of virtual particles captures solvent-mediated behavior and higher-order correlations which REM alone cannot capture in a more standard CG model based only on the mapping of collections of atoms to the CG sites.
引用
收藏
页码:4402 / 4413
页数:12
相关论文
共 46 条
  • [21] Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach
    Trement, Sebastien
    Schnell, Benoit
    Petitjean, Laurent
    Couty, Marc
    Rousseau, Bernard
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (13):
  • [22] Development of a bottom-up coarse-grained model for interactions of lipids with TiO2 nanoparticles
    Ivanov, Mikhail
    Lyubartsev, Alexander P.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (16) : 1364 - 1379
  • [23] Extending the range and physical accuracy of coarse-grained models: Order parameter dependent interactions
    Wagner, Jacob W.
    Dannenhoffer-Lafage, Thomas
    Jin, Jaehyeok
    Voth, Gregory A.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (04):
  • [24] A top-down and bottom-up combined strategy for parameterization of coarse-grained force fields for phospholipids
    Wan, Mingwei
    Song, Junjie
    Yang, Ying
    Gao, Lianghui
    Fang, Weihai
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (09) : 6757 - 6767
  • [25] Bottom-up derived flexible water model with dipole and quadrupole moments for coarse-grained molecular simulations
    Li, Chen
    Qin, Zhongyuan
    Han, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (46) : 27394 - 27412
  • [26] Assessment of an anisotropic coarse-grained model for cis-1,4-polybutadiene: a bottom-up approach
    Tanis, Ioannis
    Rousseau, Bernard
    Soulard, Laurent
    Lemarchand, Claire A.
    SOFT MATTER, 2021, 17 (03) : 621 - 636
  • [27] Machine learning coarse-grained models of dissolutive wetting: a droplet on soluble surfaces
    Miao, Qing
    Yuan, Quanzi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (10) : 7487 - 7495
  • [28] On the emergence of machine-learning methods in bottom-up coarse-graining
    Sahrmann, Patrick G.
    Voth, Gregory A.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2025, 90
  • [29] Expanding density-correlation machine learning representations for anisotropic coarse-grained particles
    Lin, Arthur
    Huguenin-Dumittan, Kevin K.
    Cho, Yong-Cheol
    Nigam, Jigyasa
    Cersonsky, Rose K.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (07):
  • [30] Entropy-based methods for formulating bottom-up ultra-coarse-grained models
    Sahrmann, Patrick G.
    Voth, Gregory A.
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (04):