Beta-negative binomial nonlinear spatio-temporal random effects modeling of COVID-19 case counts in Japan

被引:1
|
作者
Ueki, Masao [1 ]
机构
[1] Nagasaki Univ, Sch Informat & Data Sci, 1-14 Bunkyo Machi, Nagasaki 8528521, Japan
关键词
Beta-negative binomial distribution; count time series; COVID-19; extreme observation; spatio-temporal modeling;
D O I
10.1080/02664763.2022.2064439
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has spread seriously throughout the world. Predicting the spread, or the number of cases, in the future can facilitate preparation for, and prevention of, a worst-case scenario. To achieve these purposes, statistical modeling using past data is one feasible approach. This paper describes spatio-temporal modeling of COVID-19 case counts in 47 prefectures of Japan using a nonlinear random effects model, where random effects are introduced to capture the heterogeneity of a number of model parameters associated with the prefectures. The negative binomial distribution is frequently used with the Paul-Held random effects model to account for overdispersion in count data; however, the negative binomial distribution is known to be incapable of accommodating extreme observations such as those found in the COVID-19 case count data. We therefore propose use of the beta-negative binomial distribution with the Paul-Held model. This distribution is a generalization of the negative binomial distribution that has attracted much attention in recent years because it can model extreme observations with analytical tractability. The proposed beta-negative binomial model was applied to multivariate count time series data of COVID-19 cases in the 47 prefectures of Japan. Evaluation by one-step-ahead prediction showed that the proposed model can accommodate extreme observations without sacrificing predictive performance.
引用
收藏
页码:1650 / 1663
页数:14
相关论文
共 50 条
  • [21] Analysis on the spatio-temporal characteristics of COVID-19 in mainland China
    Jin, Biao
    Ji, Jianwan
    Yang, Wuheng
    Yao, Zhiqiang
    Huang, Dandan
    Xu, Chao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 152 (152) : 291 - 303
  • [22] Spatio-Temporal Analysis of the Spread COVID-19 in Saudi Arabia
    Almobarak, Arwa S.
    Almohammadi, Hanan R.
    Aboalnaser, Sara A.
    Syed, Liyakathunisa
    2020 13TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2020), 2020, : 341 - 346
  • [23] Modelling and predicting the spatio-temporal spread of COVID-19 in Italy
    Diego Giuliani
    Maria Michela Dickson
    Giuseppe Espa
    Flavio Santi
    BMC Infectious Diseases, 20
  • [24] Bayesian spatio-temporal analysis of the COVID-19 pandemic in Catalonia
    Satorra, Pau
    Tebe, Cristian
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [25] Spatio-temporal clustering analysis of COVID-19 cases in Johor
    Foo, Fong Ying
    Rahman, Nuzlinda Abdul
    Abdullah, Fauhatuz Zahroh Shaik
    Abd Naeeim, Nurul Syafiah
    INFECTIOUS DISEASE MODELLING, 2024, 9 (02) : 387 - 396
  • [26] The spatio-temporal epidemic dynamics of COVID-19 outbreak in Africa
    Gayawan, Ezra
    Awe, Olushina O.
    Oseni, Bamidele M.
    Uzochukwu, Ikemefuna C.
    Adekunle, Adeshina
    Samuel, Gbemisola
    Eisen, Damon P.
    Adegboye, Oyelola A.
    EPIDEMIOLOGY AND INFECTION, 2020, 148
  • [27] Spatio-temporal small area surveillance of the COVID-19 pandemic
    Martinez-Beneito, Miguel A.
    Mateu, Jorge
    Botella-Rocamora, Paloma
    SPATIAL STATISTICS, 2022, 49
  • [28] A Bayesian spatio-temporal model of COVID-19 spread in England
    Yin, Xueqing
    Aiken, John M.
    Harris, Richard
    Bamber, Jonathan L.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Spatio-temporal analysis of COVID-19 in India – a geostatistical approach
    Gouri Sankar Bhunia
    Santanu Roy
    Pravat Kumar Shit
    Spatial Information Research, 2021, 29 : 661 - 672
  • [30] Modelling and predicting the spatio-temporal spread of cOVID-19 in Italy
    Giuliani, Diego
    Dickson, Maria Michela
    Espa, Giuseppe
    Santi, Flavio
    BMC INFECTIOUS DISEASES, 2020, 20 (01)