Estimation of the nonparametric mean and covariance functions for multivariate longitudinal and sparse functional data

被引:2
|
作者
Xu Tengteng [1 ]
Zhang, Riquan [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate longitudinal and sparse functional data; full quasi-likelihood; kernel method; covariance decomposition; leave-one-out cross validation; DENSITY-ESTIMATION; SELECTION; MODELS;
D O I
10.1080/03610926.2022.2032170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the mean and covariance functions is very important to analyze multivariate longitudinal and sparse functional data. We define a new covariance function that not only consider the correlation of different observed responses for the same biomarker but different biomarkers. Full quasi-likelihood and the kernel method are used to approximate mean and covariance functions, the covariance decomposition is considered to decompose covariance functions to correlation function and variance function. We use the full quasi-likelihood to solve measurement errors variance lambda and choose the iterative algorithm to update the multivariate mean and covariance functions until convergence. Gaussian kernel and leave-one-out cross-validation are used to select bandwidth h. Finally, we give theoretical properties of the unknown functions and prove their convergence. Simulation and application results show the effectiveness of our proposed method.
引用
下载
收藏
页码:6616 / 6639
页数:24
相关论文
共 50 条
  • [21] Nonparametric estimation of covariance functions by model selection
    Bigot, Jeremie
    Biscay, Rolando
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 822 - 855
  • [22] Nonparametric spatial covariance functions: Estimation and testing
    Ottar N. BjØrnstad
    Wilhelm Falck
    Environmental and Ecological Statistics, 2001, 8 : 53 - 70
  • [23] Nonparametric estimation of mean residual functions
    Musie Ghebremichael
    Lifetime Data Analysis, 2009, 15 : 107 - 119
  • [24] Nonparametric estimation of mean residual functions
    Ghebremichael, Musie
    LIFETIME DATA ANALYSIS, 2009, 15 (01) : 107 - 119
  • [25] Robust estimation in joint mean–covariance regression model for longitudinal data
    Xueying Zheng
    Wing Kam Fung
    Zhongyi Zhu
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 617 - 638
  • [26] Joint estimation for single index mean—covariance models with longitudinal data
    Chaohui Guo
    Hu Yang
    Jing Lv
    Jibo Wu
    Journal of the Korean Statistical Society, 2016, 45 : 526 - 543
  • [27] Tests for equality of several covariance matrix functions for multivariate functional data
    Qiu, Zhiping
    Fan, Jiangyuan
    Zhang, Jin-Ting
    Chen, Jianwei
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 199
  • [28] Mean and Covariance Estimation for Functional Snippets
    Lin, Zhenhua
    Wang, Jane-Ling
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 348 - 360
  • [29] Adaptive banding covariance estimation for high-dimensional multivariate longitudinal data
    Qian, Fang
    Zhang, Weiping
    Chen, Yu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 906 - 938
  • [30] RKHS-based functional nonparametric regression for sparse and irregular longitudinal data
    Avery, Matthew
    Wu, Yichao
    Helen Zhang, Hao
    Zhang, Jiajia
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (02): : 204 - 216