Semi-Infinite Models for Equilibrium Selection

被引:0
|
作者
Beck, Maren [1 ]
Stein, Oliver [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Operat Res IOR, Karlsruhe, Germany
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2024年 / 9卷 / 01期
关键词
Equilibrium selection; Nash game; payoff dominance; semi-infinite optimization; cutting algorithm; MATHEMATICAL PROGRAMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In their seminal work "A General Theory of Equilibrium Selection in Games" [The MIT Press, Cambridge 1988] J. C. Harsanyi and R. Selten introduce the notion of payoff dominance to explain how players select some solution of a Nash equilibrium problem from a set of nonunique equilibria. We formulate this concept for generalized Nash equilibrium problems, relax payoff dominance to the more widely applicable requirement of payoff nondominatedness, and show how different characterizations of generalized Nash equilibria yield different semi -infinite optimization problems for the computation of payoff nondominated equilibria. Since all these problems violate a standard constraint qualification, we also formulate regularized versions of the optimization problems. Under additional assumptions we state a nonlinear cutting algorithm and provide numerical results for a multi -agent portfolio optimization problem.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] Composite semi-infinite optimization
    Dentcheva, Darinka
    Ruszczynski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 633 - 646
  • [32] Eshelby's problem for infinite, semi-infinite and two bonded semi-infinite laminated anisotropic thin plates
    Wang, Xu
    Schiavone, Peter
    ARCHIVE OF APPLIED MECHANICS, 2015, 85 (05) : 573 - 585
  • [33] THE SEMI-INFINITE DOMB MODEL
    PLASCAK, JA
    VALADARES, EC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (38) : 7403 - 7412
  • [34] SCATTERING BY A SEMI-INFINITE CONE
    SIEGEL, KM
    ALPERIN, HA
    PHYSICAL REVIEW, 1952, 87 (01): : 234 - 234
  • [35] SEMI-INFINITE ELASTIC STRIP
    JOHNSON, MW
    LITTLE, RW
    QUARTERLY OF APPLIED MATHEMATICS, 1965, 22 (04) : 335 - &
  • [36] Eshelby’s problem for infinite, semi-infinite and two bonded semi-infinite laminated anisotropic thin plates
    Xu Wang
    Peter Schiavone
    Archive of Applied Mechanics, 2015, 85 : 573 - 585
  • [37] On generalized semi-infinite programming
    Rueckmann, Jan-J.
    Gomez, Juan Alfredo
    TOP, 2006, 14 (01) : 1 - 32
  • [38] Simulations of semi-infinite penetration
    Andrews, TD
    Goldthorpe, BD
    Church, P
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P9): : 635 - 640
  • [39] FOLDED SEMI-INFINITE WAVEGUIDE
    HILLERY, HV
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1975, 57 : S66 - S66
  • [40] THEORY OF SEMI-INFINITE METALS
    ANDRIOTIS, AN
    SURFACE SCIENCE, 1982, 116 (03) : 501 - 512