An efficient method for bearing fault diagnosis

被引:7
|
作者
Geetha, G. [1 ]
Geethanjali, P. [1 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Vellore, Tamil Nadu, India
关键词
Bearing fault; classifiers; current signal; feature combination; statistical features; deep learning;
D O I
10.1080/21642583.2024.2329264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Statistical features and wavelet based fault detection are attempted to find computationally less complex, low-memory, and power for real-time implementation. The mean absolute value (MAV), simple sign integral (SSI), waveform length (WL), slope sign change, and zero crossing are extracted from the vibration signal, phase current signal-1, and phase current signal-2. The extracted features are combined varyingly to obtain 31 combinations and classified using a decision tree, k-nearest neighbor {k-NN}, and support vector machine. The identified features {MAV, SSI, WL} performed better with vibration and combined current signals, with an average accuracy of 99.8% and 99.5% with the k-NN classifier, respectively. Wavelet has shown an accuracy of 98%, and the Alexnet method obtained an average accuracy of 97.5% using a combined current signal, which is less than the time domain features-based machine learning approach. In addition, simple time-domain features require memory of 9.6 MB times less than wavelets and 4.18MB times less than Alexnet. The time domain-based technique requires a computation time of 30.21 minutes less than Alexnet and 53.54 minutes less than wavelets. Experimentally, the effectiveness of identified minimal features is verified using an induction motor current signal and achieved 100% accuracy with {MAV, SSI, WL}.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Fault diagnosis method of rolling bearing based on CLMD and CSES
    Huang C.
    Song H.
    Qin N.
    Chen X.
    Chai P.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2020, 40 (08): : 179 - 183
  • [42] New Fault Diagnosis Method for Rolling Bearing Based on PCA
    Xi Jianhui
    Han Yanzhe
    Su Ronghui
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4123 - 4127
  • [43] Fault diagnosis method of rolling bearing based on AdB value
    Wang, Peng
    Yuan, Yu
    Tian, Li
    Wang, Heng
    PROCEEDINGS OF THE ADVANCES IN MATERIALS, MACHINERY, ELECTRICAL ENGINEERING (AMMEE 2017), 2017, 114 : 67 - 71
  • [44] <bold>Fault Diagnosis of Bearing Based on Fractal Method</bold>
    Shuang, Lu
    Jing, Liu
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 13 - +
  • [45] Fault diagnosis method of rolling bearing based on AFD algorithm
    Liang, Y., 1600, Chinese Academy of Railway Sciences (34):
  • [46] Rolling Bearing Fault Diagnosis Method Based on MCMF and SAIMFE
    Meng, Dejun
    Miao, Changyun.
    Li, Xianguo
    Shi, Jia
    Liu, Yi
    Li, Jie
    SHOCK AND VIBRATION, 2022, 2022
  • [47] Bearing fault diagnosis method based on deep metric learning
    Li X.
    Xu Z.
    Xiong W.
    Wang Z.
    Tan J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (15): : 25 - 31
  • [48] An adaptive deep transfer learning method for bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Zhao, Ke
    Li, Xingqiu
    MEASUREMENT, 2020, 151
  • [49] A rolling bearing fault diagnosis method based on fastDTW and an AGBDBN
    Shang Zhiwu
    Liu Xia
    Li Wanxiang
    Gao Maosheng
    Yu Yan
    INSIGHT, 2020, 62 (08) : 457 - 463
  • [50] Fault Diagnosis of Rolling Bearing Based on a Priority Elimination Method
    Xiang, Chuan
    Zhou, Jiahui
    Han, Bing
    Li, Weichen
    Zhao, Hongge
    SENSORS, 2023, 23 (04)