Synthesis and Sintering of Li1.3Al0.3Ti1.7(PO4)3@Li2O-2B2O3 Core-Shell Solid Electrolyte Powders Prepared via One-Pot Spray Pyrolysis

被引:4
|
作者
Shin, Seongmin [1 ,2 ]
Kim, Suyeon [1 ,2 ]
Jung, Dae Soo [1 ]
Roh, Kwang Chul [1 ]
Chun, Jinyoung [1 ]
Kang, Yun Chan [2 ]
Kim, Jung Hyun [1 ]
机构
[1] Korea Inst Ceram Engn & Technol KICET, Emerging Mat R&D Div, 101 Soho Ro, Jinju Si 52851, Gyeongsangnam D, South Korea
[2] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
关键词
ceramic-glass composites; core-shell; sintering additives; solid electrolytes; spray pyrolysis; LITHIUM-ION BATTERY; NASICON-TYPE LATP; ELECTROCHEMICAL PROPERTIES; RECENT PROGRESS; METAL ANODE; CONDUCTIVITY; SAFETY; TEMPERATURE; FABRICATION; PARTICLES;
D O I
10.1002/adem.202301515
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing a rational design for oxide-based solid electrolytes to promote ionic conductivity, decrease the sintering temperature, and improve stability with metallic Li is challenging. Herein, core-shell-structured Li1.3Al0.3Ti1.7(PO4)(3)@Li2O-2B(2)O(3) (LATP-LBO) microspheres are prepared using one-pot spray pyrolysis. Phase separation between crystalline LATP and amorphous LBO leads to the formation of a core-shell-structured LATP-LBO composite. On the surface of LATP-LBO composite, the LBO shell forms a liquid phase during low-temperature sintering, thereby enhancing the densification. The LBO shell also decreases the grain boundary resistance by forming a thin layer between the LATP grains, thus increasing the total ionic conductivity. Because Li-ion conductive LBO occupies the grain boundary, a total ionic conductivity of 1.519 x 10(-4) S cm(-1) is achieved at a low sintering temperature of 700 degrees C. Additionally, the LBO shell provides good electrochemical stability for LATP with metallic Li. The improved ionic conductivity and chemical stability can be attributed to the synergistic advantages of the spherical morphology, core-shell structure, and uniformity of LBO.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] An ameliorated interface between PEO electrolyte and Li anode by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles
    Yan, Qiaohong
    Cheng, Xing
    Yan, Rentai
    Pu, Xingrui
    Zhu, Xiaohong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (02) : 601 - 607
  • [32] Synthesis and characterization of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 by wet chemical route
    Wu Xianming
    Li Runxiu
    Chen Shang
    He Zeqiang
    RARE METALS, 2009, 28 (02) : 122 - 126
  • [33] Isotropic negative thermal expansion of a Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Ghosh, Sayan
    Sudakar, C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (42) : 29271 - 29277
  • [34] In situ electrochemical modification of the Li/Li1.3Al0.3Ti1.7(PO4)3 interface in solid lithium metal batteries via an electrolyte additive
    Xu, Yadong
    Tian, Meng
    Rong, Yi
    Lu, Chengyi
    Lu, Zhengyi
    Shi, Ruhua
    Gu, Tianyi
    Zhang, Qian
    Jin, Chengchang
    Yang, Ruizhi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 396 - 403
  • [35] Chlorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries
    Li, Shuyuan
    Huang, Zhongyuan
    Xiao, Yinguo
    Sun, Chunwen
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (14) : 5336 - 5343
  • [36] Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid
    Kwatek, K.
    Nowinski, J. L.
    SOLID STATE IONICS, 2017, 302 : 54 - 60
  • [37] Preparation and characterization of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 thin-film battery by spray technique
    Xian Ming Wu
    Jin Lian Liu
    Run Xiu Li
    Shang Chen
    Ming You Ma
    Russian Journal of Electrochemistry, 2011, 47 : 917 - 922
  • [38] Insights into the sinterability and electrical properties of Li1.3Al0.3Ti1.7(PO4)3-(Li2CO3•Bi2O3) composite electrolytes
    Luo, Yuansong
    Gao, Han
    Zhao, Xiujian
    CERAMICS INTERNATIONAL, 2022, 48 (06) : 8387 - 8394
  • [39] Preparation and Characterization of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 Thin-Film Battery by Spray Technique
    Wu, Xian Ming
    Liu, Jin Lian
    Li, Run Xiu
    Chen, Shang
    Ma, Ming You
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2011, 47 (08) : 917 - 922
  • [40] Preparation, microstructure and ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3/50Li2O-50P2O5 glass ceramic electrolytes
    Zhong, Yang
    Luo, Jiajia
    Shang, Fei
    Chen, Guohua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (10) : 7869 - 7882