siVAE: interpretable deep generative models for single-cell transcriptomes

被引:8
|
作者
Choi, Yongin [1 ,2 ]
Li, Ruoxin [2 ,3 ]
Quon, Gerald [1 ,2 ,4 ]
机构
[1] Univ Calif Davis, Grad Grp Biomed Engn, Davis, CA 95616 USA
[2] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
[3] Univ Calif Davis, Grad Grp Biostat, Davis, CA USA
[4] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
GENE REGULATORY NETWORKS; RNA-SEQ; ANALYSIS REVEALS; DIFFERENTIATION; COEXPRESSION; IDENTIFICATION; INFERENCE;
D O I
10.1186/s13059-023-02850-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interpretable by design, thereby enhancing downstream analysis tasks. Through interpretation, siVAE also identifies gene modules and hubs without explicit gene network inference. We use siVAE to identify gene modules whose connectivity is associated with diverse phenotypes such as iPSC neuronal differentiation efficiency and dementia, showcasing the wide applicability of interpretable generative models for genomic data analysis.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] TECHNIQUE Single-cell transcriptomes in space
    Koch, Linda
    [J]. NATURE REVIEWS GENETICS, 2018, 19 (02) : 64 - 65
  • [22] VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
    Seninge, Lucas
    Anastopoulos, Ioannis
    Ding, Hongxu
    Stuart, Joshua
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [23] Interpretable generative deep learning: an illustration with single cell gene expression data
    Treppner, Martin
    Binder, Harald
    Hess, Moritz
    [J]. HUMAN GENETICS, 2022, 141 (09) : 1481 - 1498
  • [24] Single-cell colocalization analysis using a deep generative model
    Kojima, Yasuhiro
    Mii, Shinji
    Hayashi, Shuto
    Hirose, Haruka
    Ishikawa, Masato
    Akiyama, Masashi
    Enomoto, Atsushi
    Shimamura, Teppei
    [J]. CELL SYSTEMS, 2024, 15 (02) : 180 - 192.e7
  • [25] VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
    Lucas Seninge
    Ioannis Anastopoulos
    Hongxu Ding
    Joshua Stuart
    [J]. Nature Communications, 12
  • [26] Interpretable generative deep learning: an illustration with single cell gene expression data
    Martin Treppner
    Harald Binder
    Moritz Hess
    [J]. Human Genetics, 2022, 141 : 1481 - 1498
  • [27] Human Interpretable Radar Through Deep Generative Models
    Dvorecki, Nir
    Amizur, Yuval
    Banin, Leor
    [J]. 2022 19TH EUROPEAN RADAR CONFERENCE (EURAD), 2022, : 389 - 392
  • [28] Human Interpretable Radar Through Deep Generative Models
    Dvorecki, Nir
    Amizur, Yuval
    Banin, Leor
    [J]. 2022 52ND EUROPEAN MICROWAVE CONFERENCE (EUMC), 2022,
  • [29] Human Interpretable Radar Through Deep Generative Models
    Dvorecki, Nir
    Amizur, Yuval
    Banin, Leor
    [J]. 2022 19th European Radar Conference, EuRAD 2022, 2022, : 389 - 392
  • [30] Human Interpretable Radar Through Deep Generative Models
    Dvorecki, Nir
    Amizur, Yuval
    Banin, Leor
    [J]. 2022 52ND EUROPEAN MICROWAVE CONFERENCE (EUMC), 2022,