Bayesian meta-learning for personalized thermal comfort modeling

被引:2
|
作者
Zhang, Hejia [1 ,2 ]
Lee, Seungjae [3 ]
Tzempelikos, Athanasios [1 ,2 ]
机构
[1] Purdue Univ, Lyles Sch Civil Engn, 550 Stadium Mall Dr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Ctr High Performance Bldg, Ray W Herrick Labs, 140 S Martin Jischke Dr, W Lafayette, IN 47907 USA
[3] Univ Toronto, Dept Civil & Mineral Engn, 35 St George St, Toronto, ON M5S 1A4, Canada
关键词
NEURAL-NETWORKS; HVAC; PREFERENCES; INFERENCE; CLASSIFICATION; ENVIRONMENTS; REGRESSION; PROFILES; HEALTH;
D O I
10.1016/j.buildenv.2023.111129
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Data -driven models coupled with machine learning techniques have been developed to predict thermal comfort of individuals. However, collecting (quantitatively and qualitatively) sufficient data to develop and train the models is often challenging. This paper presents a Bayesian meta -learning approach for developing reliable, data -driven personalized thermal comfort models using limited data from individuals. The learning process considers general thermal comfort impact factors (environmental variables, clothing level and metabolic rate) as well as personal thermal characteristics. The personal thermal characteristics are expressed as a vector of continuous latent variables, estimated using limited data from each person. A high -dimensional neural network was developed to map model inputs (e.g., air temperature, relative humidity) and the vector of the continuous latent variables with personal thermal sensation (model output). The model parameters in the neural network are trained with data from various people using a subset of the ASHRAE RP -884 database. The neural network is transferrable without any update or modification (i.e., the same trained network can be used to predict the thermal preference of new individuals given their personal thermal characteristics), making the learning approach data -efficient. The results show that the developed Bayesian meta -learning approach to infer personal thermal comfort performs better than existing methods, especially when using limited data. This is important considering the practical limitations in collecting sufficient thermal response data from individuals in real buildings.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Personalized Learning with Limited Data on Edge Devices using Federated Learning and Meta-Learning
    Voleti, Kousalya Soumya Lahari
    Ho, Shen-Shyang
    2023 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING, SEC 2023, 2023, : 378 - 382
  • [32] Bayesian Meta-Learning for Adaptive Traffic Prediction in Wireless Networks
    Wang, Zihuan
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6620 - 6633
  • [33] Scalable Bayesian Meta-Learning through Generalized Implicit Gradients
    Zhang, Yilang
    Li, Bingcong
    Gao, Shijian
    Giannakis, Georgios B.
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11298 - 11306
  • [34] Amortized Bayesian Meta-Learning with Accelerated Gradient Descent Steps
    Zhang, Zhewei
    Li, Xuejing
    Wang, Shengjin
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [35] Bayesian Active Meta-Learning for Black-Box Optimization
    Nikoloska, Ivana
    Simeone, Osvaldo
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [36] PERSONALIZED FACE AUTHENTICATION BASED ON FEW-SHOT META-LEARNING
    Shin, Chaehun
    Lee, Jangho
    Na, Byunggook
    Yoon, Sungroh
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3897 - 3901
  • [37] Communication-Efficient Personalized Federated Meta-Learning in Edge Networks
    Yu, Feng
    Lin, Hui
    Wang, Xiaoding
    Garg, Sahil
    Kaddoum, Georges
    Singh, Satinder
    Hassan, Mohammad Mehedi
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (02): : 1558 - 1571
  • [38] Few-shot personalized saliency prediction using meta-learning
    Luo, Xinhui
    Liu, Zhi
    Wei, Weijie
    Ye, Linwei
    Zhang, Tianhong
    Xu, Lihua
    Wang, Jijun
    IMAGE AND VISION COMPUTING, 2022, 124
  • [39] Personalized Thermal Comfort Modeling based on Support Vector Classification
    Javed, Muhammad
    Li, Ning
    Li, Shaoyuan
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 10446 - 10451
  • [40] The Adaptive Personalized Federated Meta-Learning for Anomaly Detection of Industrial Equipment
    Liu, Yuange
    Bao, Zhicheng
    Wang, Yuqian
    Zeng, Xingjie
    Xu, Liang
    Zhang, Weishan
    Zhao, Hongwei
    Yu, Zepei
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2022, 6 : 832 - 836