Incremental quasi-Newton algorithms for solving a nonconvex, nonsmooth, finite-sum optimization problem

被引:0
|
作者
Yalcin, Gulcin Dinc [1 ,2 ,3 ]
Curtis, Frank E. [2 ]
机构
[1] Eskisehir Tech Univ, Dept Ind Engn, Eskisehir, Turkiye
[2] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA USA
[3] Eskisehir Tech Univ, Dept Ind Engn, TR-26555 Eskisehir, Turkiye
来源
OPTIMIZATION METHODS & SOFTWARE | 2024年 / 39卷 / 02期
关键词
Nonconvex optimization; nonsmooth optimization; semi-supervised machine learning; incremental quasi-Newton methods; smoothing; SUBGRADIENT METHODS; GLOBAL CONVERGENCE; SUPERLINEAR CONVERGENCE; BFGS METHOD;
D O I
10.1080/10556788.2023.2296432
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Algorithms for solving certain nonconvex, nonsmooth, finite-sum optimization problems are proposed and tested. In particular, the algorithms are proposed and tested in the context of a transductive support vector machine (TSVM) problem formulation arising in semi-supervised machine learning. The common feature of all algorithms is that they employ an incremental quasi-Newton (IQN) strategy, specifically an incremental BFGS (IBFGS) strategy. One applies an IBFGS strategy to the problem directly, whereas the others apply an IBFGS strategy to a difference-of-convex reformulation, smoothed approximation, or (strongly) convex local approximation. Experiments show that all IBFGS approaches fare well in practice, and all outperform a state-of-the-art bundle method when solving TSVM problem instances.
引用
收藏
页码:345 / 367
页数:23
相关论文
共 50 条
  • [1] Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
    Reddi, Sashank J.
    Sra, Suvrit
    Poczos, Barnabas
    Smola, Alexander J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [2] An accelerated stochastic ADMM for nonconvex and nonsmooth finite-sum optimization
    Zeng, Yuxuan
    Wang, Zhiguo
    Bai, Jianchao
    Shen, Xiaojing
    [J]. AUTOMATICA, 2024, 163
  • [3] A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
    Qiu, Junwen
    Li, Xiao
    Milzarek, Andre
    [J]. arXiv, 2023,
  • [4] ACCELERATED STOCHASTIC ALGORITHMS FOR NONCONVEX FINITE-SUM AND MULTIBLOCK OPTIMIZATION
    Lan, Guanghui
    Yang, Yu
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2753 - 2784
  • [5] A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees
    Curtis F.E.
    Que X.
    [J]. Mathematical Programming Computation, 2015, 7 (4) : 399 - 428
  • [6] A BUNDLE-TYPE QUASI-NEWTON METHOD FOR NONCONVEX NONSMOOTH OPTIMIZATION
    Tang, Chunming
    Chent, Huangyue
    Jian, Jinbao
    Liu, Shuai
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 367 - 393
  • [7] A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization
    Minghan Yang
    Andre Milzarek
    Zaiwen Wen
    Tong Zhang
    [J]. Mathematical Programming, 2022, 194 : 257 - 303
  • [8] A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization
    Yang, Minghan
    Milzarek, Andre
    Wen, Zaiwen
    Zhang, Tong
    [J]. MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 257 - 303
  • [9] Nonsmooth optimization via quasi-Newton methods
    Adrian S. Lewis
    Michael L. Overton
    [J]. Mathematical Programming, 2013, 141 : 135 - 163
  • [10] Nonsmooth optimization via quasi-Newton methods
    Lewis, Adrian S.
    Overton, Michael L.
    [J]. MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 135 - 163