A novel adaptive δ-generalised labelled multi-Bernoulli filter for multi-target tracking with heavy-tailed noise

被引:0
|
作者
Gu, Peng [1 ,2 ]
Jing, Zhongliang [1 ,4 ]
Wu, Liangbin [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai, Peoples R China
[2] Wuxi Inst Technol, Wuxi, Peoples R China
[3] AVIC Leihua Elect Technol Res Inst, Wuxi, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
来源
IET RADAR SONAR AND NAVIGATION | 2023年 / 17卷 / 03期
基金
中国国家自然科学基金;
关键词
delta-GLMB; fixed iteration; inverse Wishart; KLD; student-t; RANDOM FINITE SETS; VISUAL TRACKING; TARGETS;
D O I
10.1049/rsn2.12351
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional delta-generalised labelled multi-Bernoulli filter (delta-GLMB) cannot deal with the problem of the heavy-tailed process noise and measurement noise. In order to solve this problem, an adaptive delta-GLMB approach based on minimising Kullback-Leibler Divergence (KLD) is proposed in this study. The inverse wishart and Student-t mixture is used to approximate the joint posterior distribution of process noise covariance and measurement noise covariance together with multi-target state, and the multi-target state and noise parameters are jointly estimated by minimising the KLD. The simulation results show that the proposed approach is robust to multi-target tracking for condition with heavy-tailed process noise covariance and measurement noise covariance. Accurate target number and target state estimation are obtained by effectively estimating the process noise covariance and measurement noise covariance.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条
  • [41] The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations
    Vo, Ba-Tuong
    Vo, Ba-Ngu
    Cantoni, Antonio
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (02) : 409 - 423
  • [42] A Computationally Efficient Labeled Multi-Bernoulli Smoother for Multi-Target Tracking
    Liu, Rang
    Fan, Hongqi
    Li, Tiancheng
    Xiao, Huaitie
    [J]. SENSORS, 2019, 19 (19)
  • [43] Multi-Target Tracking by Associating and Fusing the Multi-Bernoulli Parameter Sets
    Liu, Long
    Ji, Hongbing
    Zhang, Wenbo
    Su, Zhenzhen
    Wang, Peng
    [J]. IEEE ACCESS, 2020, 8 : 82709 - 82731
  • [44] Improved multi-target multi-Bernoulli filter with modelling of spurious targets
    Baser, Erkan
    Kirubarajan, Thia
    Efe, Murat
    Balaji, Bhashyam
    [J]. IET RADAR SONAR AND NAVIGATION, 2016, 10 (02): : 285 - 298
  • [45] Cardinality Balanced Multi-Target Multi-Bernoulli Filter with Error Compensation
    He, Xiangyu
    Liu, Guixi
    [J]. SENSORS, 2016, 16 (09)
  • [46] The Nonlinear Multi-Target Multi-Bernoulli Filter Using Polynomial Interpolation
    Yin, Jian Jun
    Zhang, Jian Qiu
    [J]. 2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 2551 - 2554
  • [47] Sensor management for multi-target tracking via multi-Bernoulli filtering
    Hung Gia Hoang
    Ba Tuong Vo
    [J]. AUTOMATICA, 2014, 50 (04) : 1135 - 1142
  • [48] Sequential Monte Carlo implementation of cardinality balanced multi-target multi-Bernoulli filter for extended target tracking
    Ma, Dongdong
    Lian, Feng
    Liu, Jing
    [J]. IET RADAR SONAR AND NAVIGATION, 2016, 10 (02): : 272 - 277
  • [49] Unscented Particle Implementation of Cardinality Balanced Multi-target Multi-Bernoulli Filter
    Qiu, Hao
    Huang, Gaoming
    Gao, Jun
    [J]. 2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014), 2014, : 1162 - 1166
  • [50] An Enhanced Multi-target Multi-Bernoulli Particle Filtering for Direction of Arrival Tracking in the Presence of Impulsive Noise
    Zhao, Jun
    Gui, Renzhou
    Dong, Xudong
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2024, 135 (01) : 141 - 162