Patient-specific neural networks for contour propagation in online adaptive radiotherapy

被引:8
|
作者
Smolders, A. [1 ,2 ]
Lomax, A. [1 ,2 ]
Weber, D. C. [1 ,3 ,4 ]
Albertini, F. [1 ]
机构
[1] Paul Scherrer Inst, Ctr Proton Therapy, Villigen, Switzerland
[2] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
[3] Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[4] Univ Bern, Bern Univ Hosp, Inselspital, Dept Radiat Oncol, Bern, Switzerland
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2023年 / 68卷 / 09期
关键词
contour propagation; adaptive radiotherapy; deep learning; biomedical image segmentation; DEFORMABLE IMAGE REGISTRATION; MODULATED PROTON THERAPY; AUTO-SEGMENTATION; TARGET VOLUMES; ORGANS; RISK; HEAD; DELINEATION; CT; UNCERTAINTIES;
D O I
10.1088/1361-6560/accaca
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. fast and accurate contouring of daily 3D images is a prerequisite for online adaptive radiotherapy. Current automatic techniques rely either on contour propagation with registration or deep learning (DL) based segmentation with convolutional neural networks (CNNs). Registration lacks general knowledge about the appearance of organs and traditional methods are slow. CNNs lack patient-specific details and do not leverage the known contours on the planning computed tomography (CT). This works aims to incorporate patient-specific information into CNNs to improve their segmentation accuracy. Approach. patient-specific information is incorporated into CNNs by retraining them solely on the planning CT. The resulting patient-specific CNNs are compared to general CNNs and rigid and deformable registration for contouring of organs-at-risk and target volumes in the thorax and head-and-neck regions. Results. patient-specific fine-tuning of CNNs significantly improves contour accuracy compared to standard CNNs. The method further outperforms rigid registration and a commercial DL segmentation software and yields similar contour quality as deformable registration (DIR). It is additionally 7-10 times faster than DIR. Significance. patient-specific CNNs are a fast and accurate contouring technique, enhancing the benefits of adaptive radiotherapy.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] PATIENT-SPECIFIC QA FOR ADAPTIVE RADIOTHERAPY
    van Elmpt, W.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2011, 99 : S234 - S234
  • [2] An automated workflow for patient-specific quality control of contour propagation
    Beasley, William J.
    McWilliam, Alan
    Slevin, Nicholas J.
    Mackay, Ranald I.
    van Herk, Marcel
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (24): : 8577 - 8586
  • [3] Patient-Specific Image Prior Assisted Fast MR Imaging for Online Adaptive Radiotherapy
    Gao, Y.
    Shen, C.
    Gonzalez, Y.
    Deng, J.
    Jia, X.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E206 - E206
  • [4] Forecasting patient-specific dosimetric benefit from daily online adaptive radiotherapy for cervical cancer
    Ghimire, Rupesh
    Moore, Kevin L.
    Branco, Daniela
    Rash, Dominique L.
    Mayadev, Jyoti
    Ray, Xenia
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (04):
  • [5] Convolutional Neural Networks for Patient-Specific ECG Classification
    Kiranyaz, Serkan
    Ince, Turker
    Hamila, Ridha
    Gabbouj, Moncef
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2608 - 2611
  • [6] Dosimetric and Geometric Evaluation of Five Commercial Contour Propagation Tools for Online Adaptive Radiotherapy
    Nash, D.
    Juneja, S.
    McWilliam, A.
    Palmer, A. L.
    Osorio, E. Vasquez
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : E606 - E606
  • [7] Clinical Experience of Patient-Specific QA for Online Adaptive Radiotherapy Using Elekta Unity MR-Linac
    Yang, J.
    Vedam, S.
    Wang, J.
    Fuller, C.
    Choi, S.
    Chung, C.
    McAleer, M.
    Lee, B.
    Hughes, N.
    Ungchusri, G.
    Gillin, M.
    Martel, M.
    Balter, P.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E204 - E204
  • [8] A workflow for automatic QA of contour propagation for adaptive radiotherapy
    Beasley, W.
    McWilliam, A.
    Slevin, N.
    Mackay, R.
    Van Herk, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S898 - S899
  • [9] Intentional deep overfit learning for patient-specific dose predictions in adaptive radiotherapy
    Maniscalco, Austen
    Liang, Xiao
    Lin, Mu-Han
    Jiang, Steve
    Nguyen, Dan
    [J]. MEDICAL PHYSICS, 2023, 50 (09) : 5354 - 5363
  • [10] PATIENT-SPECIFIC FINETUNING OF DEEP LEARNING MODELS FOR ADAPTIVE RADIOTHERAPY IN PROSTATE CT
    Elmandy, Mohamed S.
    Ahuja, Tanuj
    van der Heide, U. A.
    Staring, Marius
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 577 - 580