Graphdiyne/copper sulfide heterostructure for active conversion of CO2 to formic acid

被引:5
|
作者
Cao, Shiyao [1 ]
Xue, Yurui [1 ,2 ]
Chen, Xi [1 ,3 ]
Zhang, Chao [1 ,3 ]
Gao, Yang [1 ,3 ]
Li, Yuliang [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Chem, CAS Key Lab Organ Solids, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[2] Shandong Univ, Inst Frontier & Interdisciplinary Sci, Sci Ctr Mat Creat & Energy Convers, Sch Chem & Chem Engn,Shandong Prov Key Lab Sci Mat, Jinan 250100, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL REDUCTION; HYDROGEN; SURFACE;
D O I
10.1039/d3qm00245d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis of electrocatalysts with high selectivity, activity, and stability for the CO2 reduction reaction (CO2RR) is a promising and sustainable route to convert CO2 into value-added chemicals at room temperatures and pressures. Here we report a new heterostructured electrocatalyst of graphdiyne/copper sulfide (GDY/CuSx) via the controlled in situ growth of GDY on the surface of CuSx. Our results show that the introduction of GDY can effectively induce the formation of mixed-valence Cu(i, ii) and incomplete charge transfer between the GDY and Cu atoms, which enhance the conductivity, produce new active sites, and finally result in a higher catalytic performance. In addition, the GDY grown on the surface of the catalysts endows the sample with a high long-term stability. Benefitting from above advantages, GDY/CuSx shows a high CO2-to-formate conversion performance with a high faradaic efficiency (FE) and long-term stability at room temperatures and ambient pressures.
引用
收藏
页码:2620 / 2627
页数:9
相关论文
共 50 条
  • [21] Electrochemically driven efficient enzymatic conversion of CO2 to formic acid with artificial cofactors
    Zhang, Zhibo
    Vasiliu, Tudor
    Li, Fangfang
    Laaksonen, Aatto
    Mocci, Francesca
    Ji, Xiaoyan
    JOURNAL OF CO2 UTILIZATION, 2021, 52
  • [22] Carbon Support Nanostructuration for CO2 Electroreduction to Formic Acid on Copper Based Catalysts
    Comminges, C.
    Sahin, N. E.
    Le Valant, A.
    Napporn, T.
    Parmentier, J.
    Kiener, J.
    Ersen, O.
    Melinte, G.
    Kokoh, K. B.
    SELECTED PROCEEDINGS FROM THE 231ST ECS MEETING, 2017, 77 (11): : 1291 - 1302
  • [23] Ruthenium carbonyls as active catalysts for the decomposition of formic acid to H2 and CO2
    Czaun, Miklos
    Goeppert, Alain
    May, Robert
    Zhang, Jenny J.
    Sax, Michael
    Prakash, G. K. Surya
    Olah, George A.
    Haiges, Ralf
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [24] EFFECTS OF FORMIC-ACID AND CO2 IN CO HYDROGENATION TO METHANOL OVER COPPER-BASED CATALYSTS AND NATURE OF ACTIVE-SITES
    CAI, J
    LIAO, Y
    CHEN, H
    TSAI, KR
    STUDIES IN SURFACE SCIENCE AND CATALYSIS, 1993, 75 : 2769 - 2772
  • [25] Formic acid production by simultaneous hydrothermal CO2 reduction and conversion of glucose and its derivatives
    Anderez-Fernandez, Maria
    Ferrero, Sergio
    Queiroz, Joao P. S.
    Perez, Eduardo
    Alvarez, Celedonio M.
    Martin, Angel
    Bermejo, M. Dolores
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 139
  • [26] A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
    Leiming Hu
    Jacob A. Wrubel
    Carlos M. Baez-Cotto
    Fry Intia
    Jae Hyung Park
    Arthur Jeremy Kropf
    Nancy Kariuki
    Zhe Huang
    Ahmed Farghaly
    Lynda Amichi
    Prantik Saha
    Ling Tao
    David A. Cullen
    Deborah J. Myers
    Magali S. Ferrandon
    K. C. Neyerlin
    Nature Communications, 14 (1)
  • [27] Silica Nanopowder Supported Frustrated Lewis Pairs for CO2 Capture and Conversion to Formic Acid
    Mentoor, Kgauhelo
    Twigge, Linette
    Niemantsverdriet, J. W. Hans
    Swarts, Jannie C.
    Erasmus, Elizabeth
    INORGANIC CHEMISTRY, 2021, 60 (01) : 55 - 69
  • [28] Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions
    Wang, Yanzi
    Li, Manfeng
    Zhao, Zhiping
    Liu, Wenfang
    JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2015, 116 : 89 - 94
  • [29] A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
    Hu, Leiming
    Wrubel, Jacob A.
    Baez-Cotto, Carlos M.
    Intia, Fry
    Park, Jae Hyung
    Kropf, Arthur Jeremy
    Kariuki, Nancy
    Huang, Zhe
    Farghaly, Ahmed
    Amichi, Lynda
    Saha, Prantik
    Tao, Ling
    Cullen, David A.
    Myers, Deborah J.
    Ferrandon, Magali S.
    Neyerlin, K. C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [30] Electrochemical CO2 conversion to formic acid using engineered enzymatic catalysts in a batch reactor
    Moreno, Daniel
    Omosebi, Ayokunle
    Jeon, Byoung Wook
    Abad, Keemia
    Kim, Yong Hwan
    Thompson, Jesse
    Liu, Kunlei
    JOURNAL OF CO2 UTILIZATION, 2023, 70