Benchmarking and improving the performance of variant-calling pipelines with RecallME

被引:0
|
作者
Vozza, Gianluca [1 ,2 ]
Bonetti, Emanuele [1 ,2 ]
Tini, Giulia [1 ]
Favalli, Valentina [3 ]
Frige, Gianmaria [1 ]
Bucci, Gabriele [4 ]
De Summa, Simona [5 ]
Zanfardino, Mario [6 ]
Zapelloni, Francesco [3 ]
Mazzarella, Luca [1 ,7 ]
机构
[1] European Inst Oncol IRCCS, Dept Expt Oncol, Milan, Italy
[2] Univ Milan, Dept Oncol Hematol & Oncol, Milan, Italy
[3] 4bases SA, Manno, Ticino, Switzerland
[4] IRCCS Osped San Raffaele, Ctr Om Sci, I-20132 Milan, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Mol Diagnost & Pharmacogenet Unit, Bari, Italy
[6] IRCCS Synlab SDN, I-80143 Naples, Italy
[7] European Inst Oncol IRCCS, Dept Expt Oncol, Via Adamello 16, I-20139 Milan, Italy
关键词
FRAMEWORK; AWARE;
D O I
10.1093/bioinformatics/btad722
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The steady increment of Whole Genome/Exome sequencing and the development of novel Next Generation Sequencing-based gene panels requires continuous testing and validation of variant calling (VC) pipelines and the detection of sequencing-related issues to be maintained up-to-date and feasible for the clinical settings. State of the art tools are reliable when used to compute standard performance metrics. However, the need for an automated software to discriminate between bioinformatic and sequencing issues and to optimize VC parameters remains unmet.Results The aim of the current work is to present RecallME, a bioinformatic suite that tracks down difficult-to-detect variants as insertions and deletions in highly repetitive regions, thus providing the maximum reachable recall for both single nucleotide variants and small insertion and deletions and to precisely guide the user in the pipeline optimization process.Availability and implementation Source code is freely available under MIT license at https://github.com/mazzalab-ieo/recallme. RecallME web application is available at https://translational-oncology-lab.shinyapps.io/recallme/. To use RecallME, users must obtain a license for ANNOVAR by themselves.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Accuracy and efficiency of germline variant calling pipelines for human genome data
    Sen Zhao
    Oleg Agafonov
    Abdulrahman Azab
    Tomasz Stokowy
    Eivind Hovig
    [J]. Scientific Reports, 10
  • [42] Methodical comparison of variant calling pipelines for next generation sequencing data
    Bobbili, D. R.
    Sturm, M.
    May, P.
    Sharma, M.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 721 - 721
  • [43] Implementation of standardized variant-calling nomenclature in the age of next-generation sequencing: where do we stand?
    Ann-Kathrin Eisfeld
    James S. Blachly
    Krzysztof Mrózek
    Jessica Kohlschmidt
    Christopher J. Walker
    Albert de la Chapelle
    Clara D. Bloomfield
    [J]. Leukemia, 2019, 33 : 809 - 810
  • [44] Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization
    Lorente-Leal, Victor
    Farrell, Damien
    Romero, Beatriz
    Alvarez, Julio
    de Juan, Lucia
    Gordon, Stephen V.
    [J]. FRONTIERS IN VETERINARY SCIENCE, 2021, 8
  • [45] Implementation of standardized variant-calling nomenclature in the age of next-generation sequencing: where do we stand?
    Eisfeld, Ann-Kathrin
    Blachly, James S.
    Mrozek, Krzysztof
    Kohlschmidt, Jessica
    Walker, Christopher J.
    de la Chapelle, Albert
    Bloomfield, Clara D.
    [J]. LEUKEMIA, 2019, 33 (03) : 809 - 810
  • [46] Evaluating alignment and variant-calling software for mutation identification in C. elegans by whole-genome sequencing
    Smith, Harold E.
    Yun, Sijung
    [J]. PLOS ONE, 2017, 12 (03):
  • [47] Whole-genome long-read sequencing downsampling and its effect on variant-calling precision and recall
    Harvey, William T.
    Ebert, Peter
    Ebler, Jana
    Audano, Peter A.
    Munson, Katherine M.
    Hoekzema, Kendra
    Porubsky, David
    Beck, Christine R.
    Marschall, Tobias
    Garimella, Kiran
    Eichler, Evan E.
    [J]. GENOME RESEARCH, 2023, 33 (12) : 2029 - 2040
  • [48] Arcch: Improving the Performance of Clonal Hematopoiesis Variant Calling and Interpretation Using a Consensus Based Approach
    Schmidt, Evelyn L.
    Chan, Irenaeus C. C.
    Panchot, Alex
    Wiley, Brian
    Liu, Jie
    Moukarzel, Lea
    Zhang, Yiwen
    Link, Daniel C.
    Stopsack, Konrad
    Bolton, Kelly L.
    [J]. BLOOD, 2022, 140 : 5762 - 5763
  • [49] ROVER variant caller: read-pair overlap considerate variant-calling software applied to PCR-based massively parallel sequencing datasets
    Pope, Bernard J.
    Nguyen-Dumont, Tu
    Hammet, Fleur
    Park, Daniel J.
    [J]. SOURCE CODE FOR BIOLOGY AND MEDICINE, 2014, 9 (01):
  • [50] Improving variant calling using population data and deep learning
    Nae-Chyun Chen
    Alexey Kolesnikov
    Sidharth Goel
    Taedong Yun
    Pi-Chuan Chang
    Andrew Carroll
    [J]. BMC Bioinformatics, 24